ERDAS APOLLO 2010

Administrator’s Guide

Essentials-SDI Edition
Version 10.1

April 2010

weerdas

The Earth to Business Company

Copyright © 2010 ERDAS, Inc.

All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ERDAS, Inc. This work is protected under United
States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in writing by ERDAS, Inc. All requests should be
sent to the attention of:

Manager, Technical Documentation
ERDAS, Inc.

5051 Peachtree Corners Circle
Suite 100

Norcross, GA 30092-2500 USA.

The information contained in this document is subject to change without notice.

Government Reserved Rights. MrSID technology incorporated in the Software was developed in part through a project
at the Los Alamos National Laboratory, funded by the U.S. Government, managed under contract by the University of
California (University), and is under exclusive commercial license to LizardTech, Inc. It is used under license from
LizardTech. MrSID is protected by U.S. Patent No. 5,710,835. Foreign patents pending. The U.S. Government and the
University have reserved rights in MrSID technology, including without limitation: (a) The U.S. Government has a non-
exclusive, nontransferable, irrevocable, paid-up license to practice or have practiced throughout the world, for or on
behalf of the United States, inventions covered by U.S. Patent No. 5,710,835 and has other rights under 35 U.S.C. §
200-212 and applicable implementing regulations; (b) If LizardTech's rights in the MrSID Technology terminate during
the term of this Agreement, you may continue to use the Software. Any provisions of this license which could reasonably
be deemed to do so would then protect the University and/or the U.S. Government; and (c) The University has no
obligation to furnish any know-how, technical assistance, or technical data to users of MrSID software and makes no
warranty or representation as to the validity of U.S. Patent 5,710,835 nor that the MrSID Software will not infringe any
patent or other proprietary right. For further information about these provisions, contact LizardTech, 1008 Western Ave.,
Suite 200, Seattle, WA 98104.

ERDAS, ERDAS IMAGINE, IMAGINE OrthoBASE, Stereo Analyst and IMAGINE VirtualGIS are registered trademarks;
IMAGINE OrthoBASE Pro is a trademark of ERDAS, Inc.

SOCET SET is a registered trademark of BAE Systems Mission Solutions.

Other companies and products mentioned herein are trademarks or registered trademarks of their respective owners.

Table of Contents

Table of Contents e Y
List of Tables e XV
List of Figures e XVvii
ERDAS APOLLO Server Administration 1
Introduction. 1
Audience/Purpose 1
Installation 1
Configuration 1
Administration 1
TO0IS .o 2
FAQ and Troubleshooting 2
Installation Overview. 3
About the QuickStart Section L 3
Installed Components 3
Installed Folders 3
Migrate a RedSpider Installation......................... 5
Preparation e 5
Migration Steps e 6
Post-migration Tasks 11
Uninstall e 13
Configuration Overview e 15
The Services Framework Architecture 15
Framework Components, 16
Scalable J2EE Component i 16
ERDAS Servlets 16
Connectors and Providers, 16
Databases, Flat Files,and Imagery 17
Configuration Files 17
Basic Configuration. i 17
Servlet Engine Configuration 18
Actual Servlet Level Configuration 18
Data Level Configuration 19
Geographic Information and Transactional Configuration 19
Additional Configuration Steps 20
Service Configuration 21
Configuration Methodology. 21
Data services. i e e, 22
Provider Concepts 22
Configuringa Provider 23
Steps to configure aProvider 26
Sample providers.fac 26

How to Control the Provider Configuration 27

Catalog service ittt 27

Deployment and Administration of the Server 27
Environment Configuration, 27
Database Schema Management 29
Security Configuration 30
Logging Configuration i 33
Typical Scenarios 35
Introduction., 35
Publishing Vector Datain WFS 35
Create a Shapefile Provider on top of a Data Directory 35
Create a Vector Providerontop of OracleData 37
Create a Transactional ProvideroverOracle 39
Create a PostgreSQL/PostGIS Vector Provider 42
Create an ArcSDE Vector Provider 44
Create a Vector Providerontopof GMLData 46
Create StylesonVectorData 48
PublishingImages in WMS, 49
RasterIimages i 49
Publishing RasterDatain WCS 49
Simple Coverage Services 49
Mosaic and List Coverage Services 50
ArcSDE-Raster 53
Populate, Browse and Query the Catalog 55
Authentication 56
Publishaservice 56
Data DiSCOVEIYt 57
Usingthe CSW endpoint 59
Assembling Services and CombiningData 59
Pyramid WMS 59
Cascading with an OpenGISWMS Context 59
Chaining Services i i e 60
Proxying a OpenGIS-compliant WMS 60
Proxying a OpenGIS-compliant WFS 61
SLD Portrayal Service for Features and Coverages 62
Producing Smart Maps 62
WMS by Portraying Features 62
Map Dressing Service 63
Advanced Portrayal 63
Sample WFS Requests with Filters 64
Filter by FeaturelD 64
Filter Equal to an Alphanumeric Property 65
Filter Equal with Namespaces 66
Filter on Two Alphanumeric Properties 66
Geometry Filter: Operator BBOX 67
Geometry Filter: Operator Intersects with a Given Polygon. 69
Geometry Filter: Operator Beyond a Given Point 71

Filter combining Spatial and Non-Spatial Operators 73

Advanced Scenarios 77

Introduction. e e 77
ProtectingData i 77
Disabling Interfaces 77
Hiding Columns 78
Disabling Output Formats i 79
Adding a Copyrightora Watermark 79
CreatingaCustom SRS, 80
Adding a New CRS to WCS GIO Decoder Framework 82
ERDAS IMAGINE Projection Engine 83
AddingEPSG Code 86
DefiningaNew CRS i i 87
FilteringinaGetMap i, 88
Adding User Functions 920
Addinga Javaclass Function 91
Adding a Data-source Function 92
Setting Up a WFS with GML3 Objects 95
Insert Data into the Provider 96
Curves, Surfaces, Rings 96
Measurements, Units of Measure 98
Temporal Properties and Operators 99
Portrayal Capabilities 103
Data Portrayal 103
Portrayal Concepts 103
Rules and Stylesttt 103
Rulesvs. Styles i e 103
Rules, the Portraying Logic, 103
Styles, Definition of the Lookand Feel 104
Creating Maps i it e s 104
ERDAS APOLLO Style Editor 104
Styles Templates Description 105
Creating Styles i 106
Generalities 106
Languages 106
Deploying Styles i e, 112
Generalities 112
Deployment Structure 113
Using the Map Dressing Service 114
Grid 114
North Arrow e 116
Scale Bar 117
Image Border 118
Complete Dressing Example 119
Displaying StatisticsinaMap......................... 120
Call . 120
Output Information 120

Definitions 120

Portrayal Statistics Output Values 121

Producing KML ittt e e 122
Limitations. e 123
Fast2D Rendering 123
Coverage Portrayal 123
Output Formats e 125
OVeIVIEW . ..ttt i it it s e e s 125
Image Outputs i i 125
Graphic Interlaced Format (GIF) 125
Joint Photographic Experts Group (JPEG) 125
Keyhole Markup Language (KML) 126
Scalable Vector Graphics (SVG) 127
GeoTIFF .. 128
Portable Network Graphic (PNG) 129
X-BMP 130
WBMP 131
TextOutputs 131
Plain Text Output 131
HTML . 132
GEORSS .. 132
JSON L 133
Data Outputsttt it e e 133
Shapefiles e 133
GML 213 . 134
GeoTIFF . 134
JPEG2000, ECW, NITF,DTED 134
ERDAS IMG 135
Coordinate Transformations. 137
Introduction e 137
Definition 137
SRS Concepts 137
Creating Custom Spatial Reference Systems 137
Creatinga Custom SRS 137
Usage and Syntax of the SRS/CRS Parameter 139
Administration e 141
Introduction. e 141
Types of Administration 141
SeCUNtY ..o 141
Servlet-Engine Level Configuration Parameters 142
Servlet-Engine Level Security oL 142
Servlet-Specific Configuration Parameters (providers fac). .. 143
Parameters in the providersfacFile 144
Framework Configuration 144
The WMS Servlet 148

The WFES Servilet 148

The WCSandIAS Servlets 148

The WTS Servlet i 148
Checks. e e 148
General Checks 149
License Check i e 151
CoNNECHIONSot 151
Logging . . .ot e e e 151
Logging Process 151
Compound Loggingot 156
Debugging 156
Performance Tuning e 159
Introduction. e 159
Tuning the GetMap Request 160
Tuning the Data Extraction 161
Tune the RDBMS configuration 161
Tuning the Database Indexes 163
Tuning the Native Request 164
Tuning Portrayal 165
Tuning the Raster DataSources 167
Tuning Parameters and Configuration for WCS GIO Decoders 167
processmanager.properties: 169
Tuning the Execution Environment 170
Conclusions e 172
Tools and Viewers 173
The Service Tester. i 173
Customizing Service Tester Templates 174
Data Indexer e 174
Image Indexing with the Data Manager 175
Coverage Indexer 175
Shapefile RTree Builder 175
Vector Services Utilities 176
Schema Generator 177
From-SQL Generator, 178
The WFS Loader i 181
Pyramid and Mosaic Builder 186
Pyramid Builder 186
WMS Tiler 187
Catalog WebiInterface 189
Log In to the Web Application 189
Searching and BrowsingContent 189
Advanced Search 190
Publishingcontent 190
Testingthe CSWendpoint 191
Administration options 192

Specifying the Storage Directories for Metadata, Thumbnails, &
Pyramids e 193

Changing the Storage Location for Metadata Files 193

Changing the Storage Location for Thumbnail Files 194

Changing the Storage Location for Pyramid Files 195

General Server Configuration 199

Install Properties 199

Hiding Clear Text Passwords in Configuration Files. 202

Web Client Configuration and Customization............. 208

Internationalization 208

Web Client Configuration 217

The ERDAS APOLLO Style Editor 223
Exploring Data. i i 223

Gettingstarted 223

Procedure Setting the Connection Timeout 226

Data Sources e 229

Layers . 243

Map Navigation 250

VWS .o 256

StylingData.t 263

Brief Introductionto Styling L 263

Managing Styles 264

Scale Range Management i 270

Rules Reference Guide i 272

“‘Uniform" Rule 272

Classifications 287

“‘Uniform Roads" Rule i, 301

Known Symbol"Rule 307

Feature Numberer"Rule 310

HTML Report" Rule e 312

Variable Markers" Rule 317

Patterner" Rule 320

SymbolRoller"Rule e 322

Common Elements 324

FAQ/Troubleshooting. L 329
FAQ ... e e e 329

Troubleshooting i 332

Rebuilding the Webapps 335
Deploying WAR Files on Supported Servlet Engines 339
JBOSS. . . e e e 339

JakartaTomcat 339

Detailed Parameters of a Provider 341
Lists of Possible Parameters. 341

Parameters Common to All Types of Providers 341

Parameters for the Map Framework. 344

Parameters for Vector Providers (WFS Servilet) 349

Parameters for the Coverage Framework 353
Provider Types 359
Connectors i 359
WFS -or Vector-Connectorscouiinnunnn. 360
Oracle Connector i 361
Oracle JDBC Thin Driver i 362
Oracle JDBC OCIDriver 362
Differences between Oracle OCIl and Thin Driver 363
Oracle RAC 363
PostgreSQL/PoOsStGIS 364
Shapefiles e 366
ArCSDE . 366
DBF Files 370
MIiCrosOft 371
ODBC data SourCe ittt e 371
MS-ACCESS . . oottt 371
SQLServer 2008 374
GML and GML-T 375
DGN 376
Proxy WES ... e 378
Simple Framework e 378
WMS - or Raster -Connectors 383
Simplelmage 383
Image Collection 383
Multiple Images 384
Proxy WMS .. . 384
Map Dressingot 385
Pyramid Provider 385
Portray Provider 388
ArcSDE-Raster Provider 390
Context Provider e 392
Oracle 10g GeoRaster Provider 396
WCS - or Coverage -Connectors., 399
Simple Coverage 399
Indexed Coveragesuiiii i 400
Multi Simple Coverages i, 403
Hierarchical Coverages, 405
Oracle 10g GeoRaster Coverages, 406
HDF-EOS Coveragest e 409
Pyramid Provider 411
GML Application Schema and Mapping to Databases 413
Introduction. e 413
Key Concepts ittt e 414
Application Schema 414
GML Application Schema 415
Feature and Feature Type 416

Mapping . ..o 416

Configuration Overview. 416

Feature Schema Configuration 418
GML Application Schema Construction 419
The Steps to Construct the Feature Type Schema 419

Feature Mappingt e e e et 421
Mapping Concepts 421
Mapping Methodology 422
Mapping Tags Description 424
Explicit Mapping Definition Steps L. 425
SQL Mapping Definition Steps L. 427
Automatic Mapping Definition Steps L. 429
Relational (Explicit) Mapping Definition Steps 431
Mapping of Enumerations 443
How to Control Mapping Correctness 448

Movingto GML3. i e 448
ERDAS APOLLO supportof GML3 448
GML3 Conceptsand Schemas 449
Setting Up a ERDAS WFS ServingGML3 449
Migratinga GML2Z WFStoGML3 450
Setting Up a ERDAS WFS Serving GML-SF (Simple Feature) 451

Feature Mapping Tags. i 453

Mapping Section <MAPPING> 453

Metadata Section <INFO> 459

Capabilities Feature Type Section: <EXPORT>............ 465

Collection Section: <COLLECTION> 465

Options Section: <OPTION>o, 466

User Functions Section: <UserFunction> 470

Units Definition Section: <UnitDefinition> 470

Units Association Section: <UnitAssociation> 471

WMS Layer Hierarchy Section: <WMS>.................. 471

Coverage and Image Servers. i 473

Image ServerConcepts i 473
Image Provider Types 473

Configuring Individual Coverages/lmages 474

Configuring a Mosaic or a list of Coverages/Images. 476
Image Layers IndexFile 476

The lImage DataModel 477
The HDR File Organization 478
Layout ... 481
The World Coordinate File Organization 482
The Color File Organization 485
Header Files Summary Table 485
USGSMetadata 486
Limitations and Constraints 486

Imagery Connectorst iiinnnnnn. 487

The GDAL TOOl 487

GDAL Installation Notes 491
GDAL Configuration 492
Very Large Coverage Managerc..... 496
Very Large Coverage Management Description 496
Very Large Image Management 499
Temporary FilesCanBe VeryBig 504
Configuration e 504
Limitations 505
ISSUBS . . oot 505
Examples e 505
Advanced Configuration. 507
Metadata URLt 507
Templates 507
Storage 508
Metadata Configuration in the WMS and WCS Servlets 508
Metadata Configuration inthe WFS Servlet 509
Legend URLttt et eeenes 510
The Map Generation Transformer 510
Introduction 510
Using MapGen 511
MapGen Tags and Attributes, 513
The <MapGen>Tagt e 513
Feature Properties (Re)definition 513
scaleMinand scaleMax i 515
Filter-The "Where"Tago oo e 515
The"Last" Tago 516
Warning: MapGen and Portrayal Rules 518
Scale Dependent Table 518
Data filtering i e e 518
Advanced Security i 519
Coarse-Grained Security i 520
Basic ERDAS APOLLO Security, 522
Fine-Grained Security 523
Security at the Data Source Level 531
Login Credential Map Example 533
Oracle Proxy Session Example 537
Masking e 539
SRS Configuration Parameters 547
Structure e e e 547
STORAGE 548
OPTION ... 548
INCLUDE e e e 549
Object Definition 549
ObjectSharing e e 550
Unit Definition 550
Spheroid Definition 551

Meridian Definition 551

Datum Definition 552

Geographic System Definition 553
Projected System Definition 553
OtherIDs 553
NamesSpPaces 554
Projection Definition 554
Coordinate System Definition 557
Structure of the ESRI Mapping File 558
Installing an Optional Spatial Transformation. 559
ERDAS IMAGINE Projection System Configuration. 561
Spheroidsand Datums 561
Parametric Datums 561
Surface Datums 562
ERDAS IMAGINE Projection Configuration Files. 563
mapprojections.dat 563
epPSg.PIb 563
spheroid.tab 563
sptabletab 564
units.dat ... 564
Understanding Datums, Spheroids, and Projections 565
Seven-Parameter Ellipsoidal Transformation 567
Spheroid Example 568

Surface Datum Types 568

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:

Installed Folders Explained 4
Base Configuration Levels e 17
Projection Entry Translation Table 85
Supported SLD Tags 107
NeedStat Output Meaning 121
Framework Configuration Elements 145
Debug Request Parameters 149
Available Parameters for the Log Configuration. 152
rds.properties Configuration elements. 168
processmanager.properties Configurationelements. 168
Keywords Operators for Advanced Searches. 189
Graphic Options According to Geometries. 239
Antialiasing Options e 244
Uniform - Only On Labels options 246
Symbols. . . . 247
Alignment options L e 250
Target Layer options 251
Stroke Width Units 253
End Cap Parameters e 253
Join Parameters. 254
Dashing Patterns e 254
Uniform - Sample Styles. 257
Discrete Classification - Data Types 260
Class Populator - Key Ordering. e 265
Range Classification Types 270
Description of the Map e 271
Placement Options e 274
Uniform Roads - Detail on the Sample Styles 277
Known Symbol Shapes. 279
Known Symbol - Sample Styles 280
SYMbOIs. . . . 289
Parameters Applying to All Providers 312
Parameters Applying to Map Providers 314
Parameters Applying to Vector Data Providers 319
Parameters Applying to Coverage Providers 323
Types of Connectors e 329
WFS Providers Implementation Level 331
The LOAD_MODULE Function i 348
The UPPER Function e 348
The LOAD_MODULE Function i 348
The LOAD_FILE Function. e 349
The Mapping Tag 421
The SQL Tag oo e 421
Sub-Elements of the SQL Tag 422
Sub-elements of the Elementtag 426
The Info Tag e 427
Sub-Elements of the Info Tag 427

Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:

The Export Tag e 433
Sub-Elements of the Export Tag 433
The Collection Tag. 433
The Option Tag 434
The UserFunction Tag e e 437
Sub-Elements of the UserFunction Tag 437
The UnitDefinition Tag e 438
The UnitAssociation Tag. e e 438
The WMS Tag e e e 439
Sub-Elements of the WMS Tag 439
Parameter Names and Descriptions 448
Layout Table 449
HDR File Tags e e e e e e 452
Color File Format Table 453
Header Files Table. 454
... 455
GDAL-based Source Formats by Platform 455
Geographic Credentials 493
Login Credential Map e 499
The masking parameters e 511
Typesof mask 512

SRS ConfigurationTags 515

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Services Framework Architecture 15
Providers.fac Content 23
A BBOX Filter Request 69
A Filter to Intersect with a Polygon 71
A Filter to not be Beyonda Point 73
A Filter to Cross a LineString, 75
Projection Entry Diagram 84
Map Dressing Output 119
The GetMap stream with an Oracle source 159
The GetMap optimizations with an Oracle source 171
Service Tester applet 173
RTree Structure 175
Advanced Search 190
Advanced Operations 191
CSW Panel e 191
ERDAS APOLLO Style Editor Main Window 194
Preferences item inthe Toolsmenu 195
Preferences Window. 196
The File Menu e 197
Open Project e 198
Open Recent Project 198
Data Menu e 199
Add Data Source 200
Attach a Newap Feature Server-Step2 201
Attach a New Feature Server-Step 2 202
Add Shapefiles 203
Add Map Server 204
Attach a New Map Server. 204
Attach a GeoreferencedIlmage 205
Coverage SoUrCe e 206
Portrayal Service URL 207
Secure Connection Window 208
Import Context 209
Data Source Panel 210
Data Source Properties Item. 210
Data Source Properties Window 211
Remove Data Source Option. 212
Add Data Menu 212
History List options. 213
Layers Panel 214
Add Layer e 214
Layer Properties. 215
Remove Layer 215
Ordering Layers 216

Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:

Layer Properties Menu Item 217
Max Count in Layer Properties Window 217
Use Box in Layer Properties Window. 218
Additional Parameter New Entry Window. 219
Layer Statistics with boston_shape 220
Change Scale 221
Fit To Layer 221
Envelope Panel 222
Envelope Menu 222
Overview Panel e 223
The Geometry Editor 224
Feature Info 225
List of Features 225
Gazetteer. e 226
VWS . 227
Create a New View -Method 1 228
Create a New View - Method 2, 228
View Properties 229
Enabling Map Dressing. 229
View with Map Dressing Enabled 229
View with Transparent Areas 230
Selecta Device e 231
New Device 231
Configure Device e 232
Export Context. 232
The ERDAS APOLLO Style Editor Architecture 234
Create Style Menu 235
Geometry Property Selection 235
Styling Rule Selection 236
Name Selection and Validation 236
Style Editing Dialog 237
Scale View. e 240
Edit Scale Range Window. 241
Changingthe Scale 242
Point Style Example 243
Uniform - Graphics Panel (Point Mode) 244
Uniform - Marker Panel. 245
Uniform - Select Symbol Window 247
Uniform - Label Panel. 249
Uniform - Graphic Panel (Line Mode) 252
Uniform - Graphic Panel (Polygon Mode). 255
Uniform - Label Panel. 256
Uniform - Sample Styles 257
Discrete Classification - Classification Panel 259
Discrete Classification - Opacity 261
Discrete Classification - Styles Table 261

Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:

Discrete Classification - Styles Table

Classes Populator - General Panel 263
Classes Populator - Advanced Panel. 264
Range Classification - Classification Panel 266
Classes Populator - General Panel 268
Classes Populator - Advanced Panel. 269
Classifications - Sample Result. 270
Uniform Roads - GraphicPanel. 272
Uniform Roads - Label Panel 273
Uniform Roads - Graphic Panel. 275
Uniform Roads - Select Symbol. 276
Uniform Roads - Sample Styles. 277
Known Symbol - Graphic Panel. 278
Known Symbol - Symbol Panel 279
Known Symbol - Sample Styles. 280
Feature Numberer - Marker Panel 281
Feature Numberer - Numbering Panel 282
HTML Report - Global Report Panel 283
HTML Report - Feature Fragment Panel 284
HTML Report- Header Result 286
HTML Report- FooterResult 286
Variable Markers - Marker Panel 288
Variable Markers - Sample Style 290
Patterner - Pattern Panel 291
Symbol Roller - Symbol List, 292
Symbol Roller - Entry Editor 293
The Color Chooser - Swatches Panel 294
The Color Chooser - HSB Panel 295
The Color Chooser-RGB Panel 296
The Color Chooser - Opacity Panel 297
The Font Selector. 298
Internal Data Model versus Exposed Feature Types. 382
GML Schema Structure. 384
WFS Configuration 386
WFES Mapping. 390
Road-Lane UML Diagram 399
Road-Lane Relational Diagram 399
Parcel-Person UML Diagram 405
Parcel-Person Relational Diagram 406
Brussels Orthophotoplan 442
A Setof ImagesonBrussels. 443
Example of a Data Model Organization 446
Bil Bands 447
BIL Layout 450
World File 451
Raster CS Type e 453

Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:

Tiles order in Landsat hdf4 dataset 459

WCS Process Chain. 465
Very Large Coverage Processing 466
WCS/CPS processing/renderingchain. 468
Without rendering control 469
With rendering control 469
Very Large Image Management process 470

ERDAS APOLLO Server Administration

Introduction

Audience/Purpose

Installation

Configuration

Administration

This chapter provides instructions for installing, administering and
configuring ERDAS APOLLO Server on Windows and UNIX Systems.
This document is intended for anyone entitled to set up and manage the
ERDAS APOLLO Server components.

The ERDAS APOLLO Server can be installed either on Windows
platforms or on UNIX systems. The servlets that constitute this product
can run on a variety of servlet engines as well as a variety of operating
systems. The goal of the installation section is to explain how to deal
with each type of installation for each of the components included in the
product.

The section in this guide on installation complements the quickstart
document provided with ERDAS APOLLO Server.

After having installed the product, the servlets as well as the data
sources will be configured. This section provides some common
scenarios for accomplishing common tasks. Also included is an
advanced scenarios section that provides an overview of steps to take
in order to accomplish more advanced configurations.

Examples of scenarios:

» Set up various data sources and publish them as OGC-compliant
services

* Apply portrayal to obtain and create maps
« Set up imagery

* Apply coordinate transform action

* Obtain outputs as HTML, text or shapefiles

Once the data is installed and configured, tools are necessary to query
the services, monitor servlet behavior, as well as update "on-the-fly"
configuration information. These tools will vary depending upon the
system administrator. Web-based tools and Java applications are
widely used administration access methodologies. Additionally, other
tools, mainly container administration consoles or files, are commonly
available third-party software. These tools are mentioned in this manual
for information purposes only.

Tools

FAQ and
Troubleshooting

Tools and Viewers provides extensive information on the main
interactive tools and applications that ship with this product. That
section covers utilities for trouble shooting the installation or doing
environmental checks.

FAQ/Troubleshooting covers common issues and problems
regarding the installation of the product. That section covers tips and
tricks for troubleshooting new installation.

Installation
Overview

About the QuickStart
Section

Installed Components

Installed Folders

This section describes the artifacts that are installed as a result of
running the ERDAS APOLLO Server installer.

This Installation section complements the quickstart guide. It presents
additional information in terms of advanced installation.

The quickstart guide should be used as the primary information source
for a standard installation of ERDAS APOLLO Server. This section
presents more information about what is installed.

This section presents a high-level overview of all installed components.
The ERDAS APOLLO Server DVD-ROM contains an installer that will
set up:

+ Two web applications exposing several servlets:

- erdas-apollo: the map and proxy sources ("map" servlet), the
vector data ("vector" servlet), the coverage sources ("coverage"
servlet) and the catalog data ("catalog" servlet). This also
contains the coverage portrayal service ("PORTRAY" provider
in the "map" servlet) and the ERDAS APOLLO Service Tester, a
service management tool

- apollo-client: A AJAX based web map client

 The ERDAS APOLLO Style Editor, a tool for creating styles for
image and HTML output that can be used in the ERDAS APOLLO
Portrayal Engine

See Tools and Viewers of this guide for a complete description of
the above mentioned tools.

This section describes all the folders created by the ERDAS APOLLO
Server installer. As described in the Installation Steps section, the

installer will request a directory to install ERDAS APOLLO Server. By
convention, this directory is referred to as <APOLLO_HOME> in all the
documentation. After the installation, <APOLLO_ HOME> will contain:

Table 1: Installed Folders Explained

cache

Contains the temporary cache files for each of the web services (map, vector and
coverage).

catalog

This folder stores the cache files for the Catalog service, as well as the text indexes to
allow fast keyword, and fuzzy-search.

config

This folder is a container for the map, vector, coverage, and catalog servlets resources:
configuration files, portrayal styles, ISO metadata files, legend icons are among the files
needed for a service to be properly exposed. A "storage" sub-directory holds data files
produced by the services themselves or uploaded as part of the service configuration.

data

The data folder contains sample data for a set of predefined services, and constitutes a
placeholder for custom data: images, Shapefiles, coverages, imagery, etc.

dist

This folder holds the web applications archives (WAR, EAR, etc) built from the contents
of the webapps directory. Each sub-folder contains a separate web application that is
organized based on the user selected application server (Tomcat 5.5, Tomcat 6, JBoss
4.2, WebLogic 10.1), during installation

docs

Contains the product documentation in PDF and HTML.

logs

The 1ogs folder is a placeholder for various servlet and web application log files. Log
files are prefixed with their component IDs, namely "map" for WMS, "vector" for WFS,
"coverage" for WCS, "vectorindexer" for the Coverage Indexing WFS and "catalog" for
the Catalog Service. ERDAS APOLLO Server utilizes a rolling mechanism to manage the
log file, so that each component produces files suffixed by a number between 0 and 9.

ERDAS Support may request these files be sent if customers experience
problems with the ERDAS APOLLO Server.

tomcat

This folder contains a preconfigured distribution of the Apache Tomcat 5.5 servlet engine.
Certain configuration options have been set and optimized for use with ERDAS APOLLO
Essentials - SDI. The folder also contains the deployed web app WAR files, copied to this
location automatically by the installer. This folder only exists if the "Tomcat 5.5 (Included
Server)" option was selected during the installation.

tools

This folder contains the tools described in the Tools and Viewers chapter of this guide
including the APOLLO Style Editor and the Schema Generator. It also contains Apache
Ant binaries used by the installer to build the servers deployable files.

The bundled Java JDK is also installed here. It also contains the Raster SDK resources
used by the GIO decoders, and the GIO decoder configuration of the RDS processes
executed to actually decode the data. It also contains the various libraries used for those
tools. It contains the build scripts used to build the config directory content and the
webapps.

Uninstall
ERDAS
APOLLO
Server

This folder contains the uninstaller application.

webapps

Contains the server portal erdas-apollo and the Web Client webapp apollo-client. This
folder is used to build the various war files that will be copied to the dist directory.

build.xml This build file is an Ant script that can be used to rebuild the web applications. Please
refer to the "Administration" chapter and to the "Rebuilding the Webapps" appendix for
more information.

It is important to understand that the installer first creates the
webapps/apollo-client and erdas-apollo directories, configures the
applications and then builds the WAR files from these directories.

v

You may have to change permissions on some installation folders
(typically directories where logs or config are stored), if the
Application Server used to deploy the ERDAS APOLLO Server
component is not started with the same OS user that the one used
to install the product. The user running the Application Server must
have read/write access to installation directories.

Migrate d This section provides help for users of one or more of the former

: RedSpider products, so that they can easily migrate their data and
RedSplqer services to ERDAS APOLLO Server
Installation

RedSpider Web allows to expose raster, vector and imagery services
and provides a set of tools that help configure and administer them.
Migration is rather easy even though there are about 20 migration steps
to achieve, mostly file copy.

Preparation

Conventions:

+ <REDSPIDER_HOME> means the directory where the RedSpider
Web product is installed, for example C:\lonic\RedSpiderWeb.

*+ <APOLLO_HOME> means the directory where the ERDAS
APOLLO product is installed, for example C:\Erdas\ApolloServer.

Prerequisites:

All config and data files that need to be migrated are located under the
RedSpiderWeb installation directory. It means:

+ Data files stored somewhere else can be left there and their
reference does not need to be changed.

Migration Steps

config

Configuration and data files that are created inside the deployed
webapps structure (such as in tomcat/webapps/ionicweb and
ionicwcs) need to be backported to the corresponding installation
directory (<KREDSPIDER_HOME>/www and
<REDSPIDER_HOME>/wcs).

We assume all the sample services (BOSTON_LI,
BOSTON_SHAPE, ...) listed below are not used in production. If
some of those are, they need to follow the same logic as the custom
services.

The migration sequence described below is based on the file structure
of a RedSpider Web installation. For each file, directory or sub-
directory, the guide explains how it has to be matched with the ERDAS
APOLLO Server file structure. Note that the steps below can be applied
in any order, the numbering is just a help.

config/map

config/map/providers.fac: the sample providers are BOSCON,
BOSTON_LI, BOSTON_MI, BOSTON_SDER, BOSTON_SI,
EARTH, MAPDRESSING, MASS_OVV, MULTI_SDER,
PORTRAY, PROXYMASSMAP. They have to be ignored in the
migration process except those that are actually used in production.
All the other providers have to be copied and pasted to
<APOLLO_HOME>/config/erdasHapollo/providers/
map/providers.fac .

The CONFIGURATION section of the providers.fac does not have
to be migrated but any change done to it after installation should be
applied to the corresponding providers.fac .

For the providers that are migrated, check that their configuration
does not contain a path to a file or directory under the RedSpider
Web installation directory. If it is a full path, copy the referenced
file(s) anywhere into <APOLLO_HOME>/data/erdas-apollo and
update the path parameter accordingly. If it is a relative path, copy
the referenced file(s) into the corresponding path in the ERDAS
APOLLO installation directory so that you don't need to update the
path parameter.

config/map/*: If some of the custom providers have configuration
files located beside the providers.fac, those files need to be copied
to <APOLLO_HOME>/config/erdas-apollo/providers/map. It does
not apply to the sample providers config files:
boston_ionic_context.xml and mappresentation_layers.xml.

» config/map/backup®*.fac: those files are backups of the providers.fac
produced by the Admin Console. They do not have to be migrated.

» config/map/cache: this directory contains the cached capabilities
files for the various services. It does not have to be migrated.

2. config/wfs

config/wfs/providers.fac: the sample providers are BOSTON_SHAPE,
BOSTON_ORA, BOSTON_PG, BOSTON_SDE, BOSTON_MID,
BOSTON_GAZ, ANNOTATION, BOSTON3_SHAPE, GML3EXT,
PROXYWORLD. They have to be ignored in the migration process
except those that are actually used in production.

The same rules as for the config/map directory apply, the destination
directory is <APOLLO_HOME>/config/erdas-apollo/providers/vector.

If the ANNOTATION service is used in production, it has to be migrated
and its configuration files config/wfs/annotation_*.* have to be copied.
Note that the ERDAS APOLLO Web Client does not expose a
Annotation capability like the RSW Geoviewer.

Tip: a fast track is to copy/paste all the "bostonXXX" files from
config/wfs to
<APOLLO_HOME>/config/erdas-apollo/config/providers/vector,
answering No if requested to replace an existing file. The other config
files have to be copied to <APOLLO_HOME>/config/erdas-
apollo/providers/vector .

3. config/wes

+ config/lwcs/providers.fac: the sample providers are BOSTON_SC,
BOSTONPOOL, BOSTONMULTI, BOSTON_JP2. They have to be
ignored in the migration process except those that are actually used
in production.

The same rules as for the config/map directory apply, the
destination directory is
<APOLLO_HOME>/config/erdas-apollo/providers/coverage.

» config/wcs/gml does not need to be migrated.

» config/wcs/indexer.fac: the sample indexers are ORACLE_COV,
POSTGRES_COV, GML_COV and BOSTONHEG. They have to
be ignored in the migration process except those that are actually
used in production.

The same rules as for the config/map directory apply, the
destination directory is
<APOLLO_HOME>/config/erdas-apollo/providers/coverage.

data

docs

geobrowser

config/wcsmap

config/wcsmap/providers.fac: a single provider is defined and named
CPS. It is used for portraying coverages and is part of the ionicwcs
webapp. In ERDAS APOLLO, the corresponding service is
erdas-apollo/map/PORTRAY. No migration is needed.

If other services have been configured for the ionicwcs/map servlet,
they have to be migrated to the erdas-apollo/map servlet and
configured in <APOLLO_HOME>/config/erdas-apollo/providers/map .

config/wts

The config/wts directory holds the Terrain servlet configuration files.
That servlet does not exist in ERDAS APOLLO Server so no migration
is useful. If you were actually using the Terrain servlet, please contact
ERDAS Support for migration guidance.

The other <REDSPIDER _HOME>/config directories do not need to be
migrated (t_map, t_wcs, t_wfs, wcswfs).

All custom data directories and files created there should be copied to
the corresponding directories under
<APOLLO_HOME>/data/erdas-apollo . The paths in the
config/erdas-apollo/providers/*/providers.fac should be updated
accordingly.

The RedSpiderWeb guides do not apply to ERDAS APOLLO Server, so
the PDFs do not have to be migrated. The sample SimpleFramework
modules (under docs/dev/SimpleFramework) are now in ERDAS
APOLLO Solution Toolkit. If new modules have been created, they
need to be migrated there. If other documents have been created under
<REDSPIDER_HOME>/docs, they can be copied to
<APOLLO_HOME>/docs .

This webapp is replaced with the ERDAS APOLLO Web Client. It does
not have to be migrated. If some custom files have been created in that
webapp, such as icons, context files, stylesheets,... . their migration to
the apollo-client webapp has to be analyzed with help from a ERDAS
Support team.

ionicconsole

legend

logs

Md

metadata

rendering

storage

Itis the expanded form of the ionicConsole webapp. It does not contain
any custom data, so no migration is needed. In RedSpiderWeb, the
login in the Console is preconfigured for the "rswconsole" user group
and the "admin" user configuration is described in the documentation,
with the "admin" password. In APOLLO, the default group is
"rspconsole" and the "admin" user if preconfigured with the "apollo"
password. If other groups and/or users are defined for the Console,
their configuration has to be migrated. In the APOLLO bundled Tomcat
instance, it can be done in <APOLLO_HOME>/tomcat/conf/tomcat-
users.xml .

All the legend icons sub-directories have to be copied to
<APOLLO_HOME>/config/erdas-apollo/legend .

No migration needed.

It is the expanded form of the Metadata Manager webapp. It does not
have an equivalent in ERDAS APOLLO Server. No migration needed.

All the layer metadata sub-directories have to be copied to
<APOLLO_HOME>/config/erdas-apollo/metadata, answering No if
requested to replace an existing file.

All the portrayal sub-directories have to be copied to
<APOLLO_HOME>/config/erdas-apollo/rendering, answering No if
requested to replace an existing file.

All the sub-directories have to be copied to the corresponding APOLLO
locations which are:

+ storage/map -> <APOLLO_HOME>/config/erdas-
apollo/storage/map

terrain

third-party

tools

WCs

wWww

» storage/wfs ->
<APOLLO_HOME>/config/erdas-apollo/storage/vector

+ storage/wcs ->
<APOLLO_HOME>/config/erdas-apollo/storage/coverage

The WTS servlet is not available in ERDAS APOLLO 2009. No
migration is needed.

The OpenSource Software source code and license terms do not need
to be migrated to APOLLO, as their equivalents are alrady in
<APOLLO_HOME>/docsl/licenses.

The GUI-, command-line and GDAL tools provided there have their
equivalent in ERDAS APOLLO Server. No scripts migration needed.

If custom scripts or configuration files (such as wfs loader scripts) have
been created, they have to be copied to <APOLLO_HOME>/tools .

UninstallerData: No migration needed.

It is the expanded form of the ionicwcs webapp.

If the servlet configuration parameters (generally in the
WEB-INF/web.xml file) have been changed, those changes have to be
reproduced in
<APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-INF/web.xml

If other configuration files have been put in that webapp, they need to
be copied to the <APOLLO_ HOME>/webapps/erdas-apollo/webapp
directory. It applies for the coverage decoder list (decoder.txt), the user
coordinate reference systems file (usersref.xml), and some security
configuration files (credentials.xml)... if they are still relevant.

It is the expanded form of the ionicweb webapp.

Post-migration Tasks

If the servlet configuration parameters (generally in the WEB-
INF/web.xml file) have been changed, those changes have to be
reproduced in
<APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-INF/web.xml

If other configuration files have been put in that webapp, they need to
be copied to the <APOLLO_ HOME>/webapps/erdas-apollo/webapp
directory. It applies for the coverage decoder list (decoder.txt), the user
coordinate reference systems file (usersref.xml), some security
configuration files (credentials.xml),... if they are still relevant.

build.xml: No migration needed.
*.war: No migration needed.
license.xml: No migration needed.

All other files or directories created by the user under the RedSpider
Web installation directory and that he wishes to keep should be copied
to <APOLLO_HOME> and their references updated.

After the files and directories migration is completed, the webapps need
to be rebuilt and redeployed by running "ant tomcat55" in the ERDAS
APOLLO Server installation directory. Replace "tomcat55" with
"generic", "tomcat6", "jboss42" if other installation options have been
chosen. Redeploy the war and/or ear files generated under
dist/<webapp_name>/<servlet_engine> .

If some configuration files, Web Map Contexts or service registration
catalogs mention URLs to the services or webapps, those URLs have
to be updated: Any URL containing "ionicweb/map" should be changed
to "erdas-apollo/map", except for the sample map services that are
served by "erdas-apollo/map". The same logic applies to the following
source-to-target matchings:

* ionicweb/wfs -> erdas-apollo/vector and erdas-apollo/vector (for
samples)

* ionicwcs/coverage -> erdas-apollo/coverage and erdas-
apollo/coverage (for samples)

* ionicwcs/map -> erdas-apollo/map and erdas-apollo/map (for
samples)

» ionicConsole -> apollo-admin

* geobrowser -> apollo-client

* The ionicMd webapp has no ERDAS APOLLO counterpart

* The apollo-catalog webapp does not exist in RedSpider Web

If your plan is to delete the RedSpider Web installation directory, we
recommend you first rename it and run the migrated ERDAS APOLLO
services to make sure no references to the RedSpider Web installation
directory remain.

Uninstall

Before uninstalling the product, it is necessary to undeploy the web
applications as they reference the installation directory for logs,
caching, sample data, etc.

During installation, a directory named "Uninstall ERDAS APOLLO
2010" gets created in the <APOLLO_HOME> folder which contains the
uninstall program: "Uninstall ERDAS APOLLO 2010.exe" on Windows,
"Uninstall ERDAS APOLLO 2010" on Unix. Execute the proper file for
the installation for the product to be uninstalled.

v

A set of files will not be removed as they have been modified or
added after the installation ended. This ensures client files and
directories are not removed by the product uninstaller. A
subsequent installation of ERDAS APOLLO will not alter these
files.

If those directories or files are not needed for later use, manually
remove the main installation directory at the end of the uninstall

process.

Configuration Overview

This chapter gives an overall view of the configuration in the ERDAS
APOLLO Server components.

The Services The Services Framework Architecture shows how data is manipulated

Framework through the application programming interface (API). There are three
. layers:

Architecture

* The Open GIS Interfaces
+ ERDAS Engine
+ Data Connectors

In addition, there are the configuration files that are accessed by the
Data Connectors layer.

Figure 1: Services Framework Architecture

GetCapabilities
GetMap
GetFeature

Output (gif, jpeg, svg, html,gml, ...)

Web
App Server

Configuration

Open GIS Interfaces

ERDAS Engine

Files

Diata Zonne

Connector

others
_____ distributed
server

legacy X0t map (E Portrayal

Servers Server Servers Engines

The Open GIS Interfaces layer interacts with the client applications and
services. At this level, user requests are translated into internal
statements and the results are converted into documents or images.

Framework Components

Scalable J2EE
Component

ERDAS Serviets

Connectors and
Providers

The middle layer, the ERDAS Engine, is the processing layer that
contains the ERDAS servlets. ERDAS servlets perform a variety of
functions, such as data conversions, calculations and map projections.
The servlet's behavior can be fine-tuned by modifying a set of
configuration files.

The Data Connections layer is the lowest layer. It connects the data
server or source to the servlets. It uses the configuration files that
provide information permitting access to the data and making the data
connectors visible as services.

The components of the framework are:

» Scalable J2EE Components: The J2EE container or Web
application server that manages the service, e.g., Tomcat, JBoss
and WebLogic

« ERDAS Servlets

« Connectors and Providers: Data accessed via the servlets, i.e.,
Oracle 9i/10g/11g, PostgreSQL/PostGIS, Shapefiles and Map,
Coverage or DEM Sources

+ Databases, Flat Files and Imagery: Data connectors - a type of
"plug-in" that understands database files accessed through WFS as
well as imagery sources published as WMS, WCS or WTS

» Configuration Files: Setting up the services

The ERDAS APOLLO Server components are completely written in
Java and use several configuration files allowing easy and rapid
configuration. These services are highly scalable and the fully reentrant
J2EE components can manage as many threads as these services
request. This permits the container to manage the threads with no risk
of interference.

The ERDAS Servlets are middleware that provide the processing
necessary to perform a number of functions within the application.
These functions are data management and conversion and map
projections.

Each service connects to a data source - imagery, database or other.
The data source connection is optimized through a specific connector
that manages the mapping from the Web Service to the data. A
connector that is configured to accomplish the task of mapping is called
a "provider".

Databases, Flat Files, The database can be an SQL database engine, another geo-engine, a

and Imagery data file, a raster image or a coverage. It is possible to have multiple
Web Services accessing the same data. Each type of data source is
configured with a specific connector having its own parameters that
best matches the internal connector model with the web service's one.

Beyond the connectors predefined in the product, it is possible to
develop new connectors. ERDAS APOLLO Solution Toolkit product,
usable on top of ERDAS APOLLO Server, provides a "Simple
Framework" APl in order to plug a map connector into the WFS servlet.
It is primarily intended to make it easy to implement a connector over
flat files. It also allows to develop custom coverage data decoders and
custom coverage metadata decoders.

Configuration Files The ERDAS Web Services configuration files are used to control the
type of services, connection pools, or operating system resources.
These are also used to define the global behavior of the system. Most
of the configuration modules rely on XML files as this format is widely
used by software vendors and fully managed utilizing Java.

Basic ERDAS servlets are middleware that must be configured to a specific
H H environment. Each user environment differs; they will connect to unique
Conflguratlon data sources and may have different Web Application Servers.
Additionally, methods and requirements for displaying geoinformation
vary from installation to installation. Even though the configuration of
Erdas products may result in unique profiles for each environment, the
procedure to configure services is the same.

Regardless of the servlet type, configuration for ERDAS APOLLO
Server components consists of four basic levels:

+ Servlet Engine Configuration
* Actual Servlet Level Configuration
+ Data Level Configuration

* Geographic Information - Transactional Configuration

Table 2: Base Configuration Levels

WMS WFS WCS

Servlet web.xml web.xml web.xml
Engine Level

Table 2: Base Configuration Levels (Continued)

WMS WFS WCS
Servlet Level| Providers.fac, World File Providers.fac, Feature Providers.fac, index
Mapping and Schema
Data Level Format, Size RDBMS, JDBC, index Format, Size
Gl/Transacti | SRS SRS, Portrayal, Transactional | SRS, Portrayal
onal Level
Additional Metadata, Dimension/Filter, Metadata, Dimension/Filter, Metadata, Performance
Configuratio | LegendURL, Copyright, LegendURL, Copyright, tuning, Coverage output
n Performance tuning, GML Performance tuning, GML
output output
Servlet Engine A servlet exists in the context of a Web Application, defined in a single
Configuration XML file called web . xm1. Configuration at the Servlet Engine level

consists of configuring the content of this web . xm1 file. This file is
located in the WEB-INF subdirectory of the Web Application and
provides the primary configuration information such as the name and
location of the configuration files for each servlet. So, for the ERDAS
APOLLO Server installation, web.xml files can be found in the wEB-INF
directory of each of the ERDAS WAR files, i.e. erdas-apollo.war Or
apollo-client.war.

For more information about the web . xm1 file including specific steps for
set up, please refer to Administration in this guide.

Actual Servlet Level All of ERDAS's servlets are configurable according to the desired

Configuration functionality. The majority of the configuration steps are at this level.
Most of ERDAS's servlets use a factory file, called providers. fac
which defines the link to data sources and servlet properties. These
providers.fac files are located in the installation directory, under
config/erdas-apollo/providers/<service type>, Where
<service type>canbemap, coverage, vector, Ofr catalog. It serves
two functions:

« To administer the servlets

» To set up access to data sources

The methodology and step-by-step definition of content in the
providers.fac file is detailed in Service Configuration.

Data Level Configuration

Geographic Information
and Transactional
Configuration

In some cases, such as the WFS, additional steps need to be
performed. Additional steps may include defining feature types and
matching of these features types with a data structure. Feature types
are defined in a XML Schema file and matching this schema with the
corresponding data structure is done in a XML "Mapping" file. They are
both referenced in the providers.fac file. There are several different
types of mapping that are available depending on the nature of the data.
The main options available are:

* SQL Mapping for data directly mapped to feature types

« Explicit Mapping for assigning names to feature types different from
data

+ Automatic Mapping for data model built from feature types definition

Reference Feature Mapping Tags for mapping different data types.

Once the servlets are configured, the data will need to be formatted and
named to make them accessible by the services. ERDAS APOLLO
provides several methods for preparing data sources for use with the
servlets. Depending on the type of data and the servlet type, i.e. WMS,
WES or WCS, the following can be configured:

* For Map data in a WMS: Data Format and Size.

* For Feature data in a WFS: Database Connection and Tuning, (e.g.
JDBC, RDBMS, index files).

* For Coverage data in a WCS: Data Format, Size and Organization.
(Possibly indexed by a WFS or a Catalog).

This level of configuration takes place within the data files themselves.
Please refer to Typical Scenarios and Provider Types for additional
details and exact steps for each data type.

The Geographic Information (Gl) and Transaction Configuration level
insures that geodata served by ERDAS components are
comprehensible to users. This may mean that all data must adhere to
certain Gl characteristics, such as spatial reference systems and
bounding box extents. For feature data, the look and feel of the data can
be configured by defining portrayal rules and styles. This configuration
takes place at the level of the servlet through an additional parameter
given in the providers.fac file. Refer to Portrayal Capabilitiesfor further
information on the steps to take.

Additional
Configuration
Steps

Data accessed by the WFS may also be transactional. This means that
the data can be altered in the database through insert, update and
delete statements. The WFS can become transactional by defining
additional settings in the "Mapping" XML file. Please refer to Typical
Scenarios and Advanced Scenariosfor additional details on
transactional services.

After completing the four basic levels of servlet configuration, the
geodata are ready for publishing on the Web. However, there may be
additional publishing needs and further optimization of data access.

ERDAS APOLLO supports advanced configuration allowing:

» Configuration of ISO-compliant metadata to describe the data for
other users.

+ Application of filters in requests to narrow down the data for efficient
analysis purposes.

+ Addition of a legend bitmap reference that supports the display of
legend icons on the maps.

* Creation of different types of output, including GML documents and
shape files.

* Fine-tuning of GML output to allow filtering, renaming of elements,
and to hide private data

Refer to Typical Scenarios and Advanced Configuration for
additional details and detailed steps for the desired configuration.

Service Configuration

Configuration
Methodology

This chapter gives a general explanation on how to manually configure
each type of data source. Nevertheless, the simple way to administrate
services and data sources is the ERDAS APOLLO Data Manager, which
is a graphical tool provided in a separate installer along with the ERDAS
APOLLO product (see the "Installing ERDAS APOLLO Data Manager"
section of the Quickstart Guide for more details).

Configuring a Web Service, i.e., WMS, WFS, WCS, depends on the
type of data and services published. The steps listed below cover
common data types.

For vector data , data is commonly configured to be presented as
features.:

+ Define an XML schema definition of the feature types to expose.
(See GML Application Schema and Mapping to Databases)

» Establish the feature types relational mapping to the datastore,
often a SQL mapping (See Appendix E, Configuration Overview)

* For each service, indicate the connectors to be used in the
providers file (see the following sections for instructions for each
type of data source).

For raster and coverage data, the data must be configured, i.e., world
file, colors, format, and declared.

* Put the image or coverage files in a set of directories accessible to
the servlet.

+ Create and put the corresponding World and/or Metadata files in
that same directory.

* For each service, indicate the connectors to be used in the
providers file (see the following sections for instructions for each
type of imagery data)

For any other type of data (proxy, pyramid, specific), the entry in the
providers file is the only mandatory step. The other actions are
dependent on the type of connector used.

Presenting vector data as maps requires an additional step - portrayal.

Data services

Provider Concepts

Once the configuration tasks are completed, the servlets can be
deployed or re-deployed by rebuilding the WAR file and deploying it in
the servlet engine.

To check if new providers are well defined and visible, call the servlet
with the parameters request=debug&cmd=getlist, through a URL that
will look like: http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=getlist. If the new
provider is well defined, its ID will appear in the list.

To check if the data are correctly published, request an OGC
capabilities from the service and check that the returned capabilities
document is as expected. In the case of a WFS, calling the
"DescribeFeatureType" checks the feature type mapping. An example
would be: http://localhost:8080/erdas-
apollo/vector/ATLANTA_VECTOR?version=1.0.0&service=WFS&r
equest=DescribeFeatureType&typename=roads.

An ERDAS Web service, i.e., WFS, WMS, WCS is configured through
a main factory file named providers.fac used by the associated servlet
(see Servlet-Specific Configuration Parameters (providers fac)).
This XML configuration file is composed of:

* A global configuration section use to configure the framework
behavior utilizing the <CONFIGURATION> tag.

+ Several WMS/WFS/WCS configuration sections, one per defined
service, utilizing multiple <CREATE> tags.

A provider describes an instance of a connector. A connector is a Java
class that plugs into the servlets to make a link with one type of data
such as a large raster image or a shapefile. Multiple instances of a
connector can be defined if there are multiple data sources such as
multiple images or shapefiles. Each instance is a provider and creates
a running Web Service. A section of the "providers.fac" is called
<CREATE> and sets how the instance of a given service is linked to a
connector and how the data store is accessed.

Figure 2: Providers.fac Content

providers.fac

<CREATE ID=BOSTON @Connector (JCLASS): :
"com.ionicsoft...Oraclegi*> !

Name : *BOSTON_ROADS" :
Title :WFS on Boston Roads updated in 2003. :
L]

=0ne Provider
=0ne WFS service
={ne <Creatas

sessdep e .-

————@ Connect ; "oraclesflonic/user+ USA/passwaord +XX"
@ Types :"GML_BOSTON_FEATURE_TYPE_LIST.xml"
————@ Mapping : "Bostan_to_Oracle_mapping.xm!™
</CREATE>

LT R R L L L R A R T R R L L L L

Connector Configuration

® Feature Type Definition

——* Mapping Definition

A provider has the following characteristics:

* One Web Service, WMS, WFS, WCS, etc is associated with one
and only one provider.

» One provider is an instance of a connector.
* One configured connector is a provider.

* One provider is configured in the providers.fac by one tag
<CREATE>.

Configuring a Provider

This section describes in detail the physical definition of a provider.
Most of the time, it is not necessary to create or edit them manually
as the ERDAS APOLLO Data Manager is designed to allow all
types of service configurations needed.

The <CREATE> element

The <CREATE> element is used to configure a provider and contains 2
attributes:

* The ID that uniquely identifies each provider in a framework and

* The JCLASS that indicates the kind of provider class used to
connect to the data souce.

Each service to be managed is defined and has an associated ID which
is referenced by client-side components. This ID will give the name of
the service. For example, if the ID is "ATLANTA", then the service could
be: "http://www.mysite.com/erdas-apollo/vector/ATLANTA?".

JCLASS indicates the name of the connector's Java class that will be
used for this Web service. A list of all the possible connectors is
provided in Provider Types.

The <PARAM> and <PARAMBLOCK> elements

Each provider is defined by a CREATE element. The Create element
has parameters defined in the PARAM and PARAMBLOCK elements.
The PARAM and PARAMBLOCK elements have a number of possible
names and values. Each provider has a specific set of mandatory and
optional PARAM and PARAMBLOCK elements. A "PARAM" element
has two attributes: "NAME" and "VALUE", i.e., <PARAM NAME="title"
VALUE="Erdas WFS server on ATLANTA"/>. A "PARAMBLOCK"
element has only the "NAME" attribute" which maybe optional and
embeds one or more <PARAM> and <PARAMBLOCK> sub-elements.
The tables in Appendix "Detailed Parameters of a Provider" lists the set
of supported PARAM and PARAMBLOCK elements for each type of
service.

Not all parameters apply to each type of provider. Some are mandatory
and others are optional.

The following list gives an overview of the mandatory parameters:
* CONNECT: URI to connect to a data server (JDBC or other).
* CONTEXT: URL or path to a OGC WMS context document.

+ PATH: path to a filesystem file or directory.

« HEGPATH, GDALPATH: path to a tool installation directory.

+ INDEXINGPROVIDER, INDEXINGSERVER: provider file and
name for indexing coverages.

* LAYERS: path to a configuration file defining the layers.

* NAME: name given to a layer in the Image providers.

* RULEDIR: path to the directory holding the portrayal rules and
styles.

TABLE: name of a relational table, or pattern to a set of tables.

TYPES: URL or path to a configuration file defining the feature
types.

URL: URL to a remote service.

The following list briefly describes other parameters that are always
optional.

ABSTRACT, TITLE, KEYWORDS, SERVICE, PARAMBLOCK
"contact": descriptive text for a service.

AJUST_BOX, QUALITY: image post-processing directives.
BACKGROUNDVALUE: pixel value for coverages.
COPYRIGHT, DISABLEDINTERFACE, SECURITY,
MAXFEATURECOUNT: various means to restrict use of the
service.

FILE: path to an index file.

INDEXINGTYPE: the type of coverage indexer.

JNDIDATASOURCE, POOLSIZE, LSTRING, MAXOPEN:
database connectivity properties.

LAYERTITLE, LAYERABSTRACT, PARAMBLOCK "layers": some
text describing each layer.

LEGENDURL: URL to thumbnail images to use for legends.

LIMITEDSIZE, LIMITEDCOLOR, LIMITEDTRANSPARENCY:
information allowing enhancement of the underlying data or server.

MAPPING: URL or path to a feature_type-to-database_schema
mapping file.

METAURL: URL to ISO 19115 metadata files.
MODE: The dynamic aspect of a coverage server.

PARAMBLOCK "CoverageOffering": metadata text about the
coverages.

PATTERN: used in conjunction with "TABLE", to allow pattern use.

REMOVE_MAP_FORMAT, REMOVE_INFO_FORMAT: disables
some of the output formats.

Steps to configure a
Provider

Sample providers.fac

* SRS, PUBLISHEDSRS, REMOVE_SRS: list of coordinate systems
to publish or restrict.

« TMPPATH: path to a directory holding temporary coverage files.
Please refer to Detailed Parameters of a Provider for the complete list

of parameters, and to Provider Types for the set of parameters
applicable for each type of provider.

URL parameters behavior:

* Relative URLs are relative to the URL of the factory file
(providers.fac)

* Object URLs (obj:) are relative to the resource directory of the
servlet (i.e., com.ionicsoft.wfs.server.resource for WFS)

* Resource URLs (res:) are relative to the CLASSPATH (i.e.,
res:///com/erdas/sref/impl/resource/factorysref.xml)

e Others are absolute URLs

The configuration of a new provider should always be done through the
ERDAS APOLLO Data Manager tool. In the Data Manager guide, the
section "How do | create a new vector service provider?" provides all
details necessary to successfully set up a new service.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE FACTORY SYSTEM "factory.dtd" >
<FACTORY>

<CREATE ID="ATLANTA ORA"
JCLASS="com.erdas.wfs.provider.oracle.OracleProvider">
<PARAM NAME="title" VALUE="Erdas WFS server on ATLANTA"/>
<PARAM NAME="connect"
VALUE="oracle://myhost/user+foo/password+bar/SID+ATLANTA" />
<PARAM NAME="types" VALUE="obj:///atlanta ora.xsd" />
<PARAM NAME="mapping" VALUE="obj:///atlanta ora.xml" />
</CREATE>

<CREATE ID="ATLANTA SHAPE"
JCLASS="com.erdas.wfs.provider.shapev2.ShapeProvider">
<PARAM NAME="title" VALUE="Erdas WFS over ATLANTA SHAPE
Files"/>
<PARAM NAME="path" VALUE="D:/Erdas/data/shapes/atlanta" />
<PARAM NAME="types" VALUE="obj:///atlanta shape.xsd" />
<PARAM NAME="mapping" VALUE="obj:///atlanta_ shape.xml" />
</CREATE>

<CONFIGURATION>

How to Control the
Provider Configuration

Catalog service

Deployment and
Administration of the
Server

Environment
Configuration

//if framework configuration is also in the same file, it
comes here

</CONFIGURATION>

</FACTORY>

If there is a syntax error in the providers.fac file, either the service will
not start or one or more providers will not be accessible. Invoking the
service "debug" pseudo-provider or one of the newly defined provider
IDs will provide a direct answer on syntax correctness. Example:
http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=getlist.

Another way to check the syntax of the providers.fac is to use an XML
validation tool along with the factory.dtd definition file that defines the
allowed tags.

If there is a mistake in the definition of a provider, the effect will vary
depending on the mistaken attribute or parameter. As a control, if the
service agrees to deliver the provider capabilities document, the
information included will give details about the erroneous declarations.
If a capabilities document is successfully returned, send a GetMap or a
GetFeature request because it will invoke the data server and return
maps or data. Even though GetCapabilities, DescribeFeatureType
(WFS only) and DescribeCoverage (WCS only) cause the instantiation
of the provider and the connection to the data server, they do not send
data requests.

After the ERDAS APOLLO installation process completes successfully,
the APOLLO Catalog will be part of the installed web applications.

It is still possible to change the configuration of your APOLLO Catalog
afterward. You can easily change the configuration of the used data
source (the database), the security definition, or the logging
mechanism. The next sections contain the information for doing this.

The APOLLO Catalog web application is part of the global erdas-
apollo.ear application that was installed in your application server as a
result of the install procedure. The apollo-catalog is mainly
parameterized using a single file, erdas-
apollo.ear/conf/hibernate.properties.

A build of the application will replace the tokens located in that file with
what was provided during the installation. Those values are stored in
the build.properties which customizes how the build operates. This
section mainly discusses how to change some of the tokens without
reinstalling the product.

The hibernate.properties file contains the following kinds of
configuration:

+ Database Configuration.
+ Search Configuration.

+ Security Configuration.

Database-Related Variables

Database-related variables allow you to change the database that the
catalog connects to; it can also be used to switch from one RDBMS to
another if necessary. The following keys can be changed in the
build.properties file:

* hibernate.dialect defines the database dialect to use. You do
not need to change this unless you want to switch from one RDBMS
to another. For Oracle, the value is
com.erdas.rsp.hibernate.oracle.OracleDialect and for PostgreSQL
the value is com.erdas.rsp.hibernate.postgis.PostgisDialect .

* hibernate.connection.datasource defines the J2EE
datasource used by the catalog. See the description of apollo-
ds.xml below.

* The datasource and related database connection parameters are
defined in the apollo-ds.xml file, located in at the root of your
application server deployment directory.

Search-Related Variables

It is possible to change the storage policy of the indexes used to
perform free text searches. This is an advanced use case and ERDAS
recommends that you check the official Hibernate documentation first.

The following properties can be changed directly in the erdas-
apollo.ear/conf/hibernate.properties file:

* hibernate.search.default.directory provider defines the
directory provider managing the index information storage.

http://www.hibernate.org/hib_docs/search/reference/en/html/search-configuration.html#search-configuration-directory

* hibernate.search.default.indexBase defines the base path
where the indexes are stored.

Depending on the provider type used, other variables could be
affected or used. Those are explained in the official documentation.

Security-Related Variables

Database Schema
Management

The security is largely explained below, see Security Configuration.

By default, the configuration of the default permissions is defined by the
file erdas-apollo.ear/erdas-apollo.war/WEB-
INF/classes/default-permissions-config.xml. If you want to
configure the application so that another configuration file is used
instead, you must update the default-permissions-config.xml
property in the hibernate.properties file.

The ERDAS APOLLO installation process can automatically generate
the required schema for using the ERDAS APOLLO Catalog if you
specify during the installation that it should do this. If you have an
existing database, you should create a backup before you install a new
version of ERDAS APOLLO.

The schema generation script can be invoked on the command line in
order to recreate a fresh schema, to update an existing schema, or if
apollo-catalog has been configured to use another database or
schema.

The generator is located in the tools/schema-generator directory of
the ERDAS APOLLO installation. By default, the build.properties
contains the database credentials that have been entered at installation
time. If a fresh schema needs to be created on another database or
schema, you will have to update this file. See Database-Related
Variables for more details.

The management of the schema is handled by an Apache Ant build
script which provides the following operations:

* upgrade (default): upgrades the schema if necessary. If the schema
is empty, the necessary tables are created.

* drop : removes the apollo-catalog tables and their contents.

* recreate : is a shortcut that performs the drop operation followed by
the create operation.

Security Configuration

Make sure to backup your data prior to any upgrade operation.

Any schema management operation will log everything in the schema-
upgrade. log file located in the same directory.

To implement the security requirements of the application, the open
source framework Spring Security is used.

The configuration of security is mainly in the erdas-
apollo.ear/erdas-apollo.war/WEB-INF/config/security-
config.xml file. This file defines the basic components of the security
of the system. The overall security of the catalog can be set up at
different levels:

* Authorizing which methods can be invoked (Method Level
Security).

» Authorizing access to individual domain object instances (Object
Level Security).

» Authorizing web requests (HTTP Authentication).

Configurations relevant to all of the levels are explained below with
examples.

Method Level Security

Method-based security lets you secure a method which can be
executed by only those users who have been granted a particular
security role. Different methods of the service bean are configured to be
secured. Only certain roles are allowed to execute those methods. This
is configured using the method security interceptor.

Method security is enforced using this MethodSecuritylnterceptor,
which secures MethodInvocations. Depending on the configuration
approach, an interceptor may be specific to a single bean or shared
between multiple beans. The interceptor uses a
MethodDefinitionSource instance to obtain the configuration attributes
that apply to a particular method invocation. It is configured in the
security-config.xmlfile.

<bean id="theMethodSecurityInterceptor"

class="org.springframework.security.intercept.method.aopallianc
e.MethodSecurityInterceptor">

<property name="authenticationManager"
ref="authenticationManager" />

http://static.springsource.org/spring-security/site/index.html

<property name="accessDecisionManager"
ref="accessDecisionManager" />
<property name="objectDefinitionSource">
<value>

com.erdas.rsp.babel.service.persistence.PersistenceService.find
*=IS AUTHENTICATED ANONYMOUSLY

com.erdas.rsp.babel.service.persistence.PersistenceService.coun
t*=IS AUTHENTICATED ANONYMOUSLY

com.erdas.rsp.babel.service.persistence.PersistenceService.pers
ist*=BABEL PUBLISHER,BABEL_ ADMIN

com.erdas.rsp.babel.service.persistence.PersistenceService.dele
te*=BABEL PUBLISHER,BABEL ADMIN

com.erdas.rsp.babel.service.persistence.PersistenceService.upda
te*=BABEL PUBLISHER,BABEL ADMIN

</value>

</property>

</bean>

Object Level Security

Object Level security is used to secure a resource by restricting access
to only those users who have been granted a particular security role.

This is achieved by securing the domain objects. Domain objects are
persisted along with the permissions associated with them. When the
object is accessed using a service, the current user's identity and roles
are checked and if the principal has READ permission set on the
domain object, then the object is returned in the service response.

Generally when a domain object is persisted, either it is persisted with
a specific set of permissions or it is persisted with the default
permissions. Those default permissions are defined in the default-
permissions-config.xml file located in the erdas-
apollo.ear/erdas-apollo.war/WEB-INF/classes directory of the
apollo-catalog source web application.

This file defines a set of policy and the policy that is active for the whole
instance. For instance, if you want to grant all rights to the user who
created an object and READ permissions to anyone, you would
configure it like this:

<Security xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="default-permissions-
config.xsd">

<!-- Defines the policy in use -->
<ActivePolicy name="user"/>

<Policy name="user">
<Default>
<CurrentUser rights="RUD+-"/>
<Anyone rights="R"/>
</Default>
</Policy>
</Security>

The syntax of the secuirity file is fairly simple. The active policy must be
named as follows:

<ActivePolicy name="policy2" />

Each policy must be defined. Its definition basically contains a name
and a default section that defines the rights that you want to associate
to an object created in the system.

<Policy name="policy2">
<Default>
<CurrentUser rights="RUD" />
<CurrentRoles rights="RU" />
<Role name="rolel" rights="RUD" />
<Default>
</Policy>

The rights are simply defined by a letter where R means Read, D means
Delete, U means Update,+ means Grant Right, and - means Revoke
Right.

HTTP Authentication

HTTP authentication and authorization is provided through the use of a
web filter, an AuthenticationProvider, and an AuthenticationEntryPoint.
The configuration of the web filter, AuthenticationProvider, and
AuthenticationEntryPoint are as follows:

* Inthe web.xml file, this application will need a single Spring
Security filter in order to use the FilterChainProxy.

<filter>
<filter-name>filterChainProxy</filter-name>
<filter-class>

org.springframework.web.filter.DelegatingFilterProxy

</filter-class>

</filter>

<filter-mapping>
<filter-name>filterChainProxy</filter-name>
<url-pattern>/catalog/*</url-pattern>

</filter-mapping>

Logging Configuration

The above declarations will cause every web request to be passed
through to the bean called filterChainProxy which will usually be an
instance of Spring Security's FilterChainProxy.

* The FilterChainProxy enables web requests to be passed to
different filters based on URL patterns. Those delegated filters are
managed inside the application context, so they can benefit from
dependency injection. Let's have a look at what the
FilterChainProxy bean definition (located in the security-base-
config.xml file) would look like inside our application context:

<bean id="filterChainProxy"

class="org.springframework.security.util.FilterChainProxy">
<security:filter-chain-map path-type="ant">
<security:filter-chain
pattern="/**"

filters="httpSessionContextIntegrationFilter,logoutFilter,

authenticationProcessingFilter, securityContextHolderAwareReques
tFilter,

anonymousProcessingFilter,basicProcessingFilter, filterInvocatio
nInterceptor"/>

</security:filter-chain-map>
</bean>

The property filter-chain-map allows us to define the mapping from
URLSs to filter chains, using an instance of filter-chain containing an
ordered list of filters. It is important to note at this stage that a series of
filters will be run - in the order specified by the declaration - and each of
those filters is actually the id of another bean in the application context.
So, in our case all the beans that are declared under filterChainProxy
will also appear in the application context, and they will be named
httpSessionContextintegrationFilter, logoutFilter, and so on.

Logging in ERDAS APOLLO is ensured by Log4j, a Java-based logging
utility of the Apache Software Foundation. Log4j offers six standard
logging levels. From highest (coarsest) to lowest (finest), those levels
are:

* FATAL: production, fatal application error, application cannot
continue. Could be caused if the database is down, for example .

* ERROR: production, application error/exception but application can
continue. Part of the application is probably not working.

* WARN: production, simple application error or unexpected
behaviour. Application can continue. Can be used in case of bad
login attempts or unexpected data during import jobs, for example .

* INFO: production optionally. Can be used to print that a
configuration is initialized or that a long running import job is starting
and ending, for example.

+ DEBUG: development only, for debugging purpose.

* TRACE: development only, can be used to follow the program
execution.

The ERDAS APOLLO Catalog uses these different levels of logging to
provide feedback on activity. Logging configuration is defined in the
WEB-INF/classes/log4j.properties file of your ERDAS APOLLO
Catalog web application. In JBoss, this configuration may be overriden
by the global jboss-log4j.xml file locacted in the jboss /conf directory.
This file allows you to define:

* Appenders: control how the logging is output.
» Layout, associated to appenders: control how to format the output.

* Loggers: responsible for handling the majority of log operations.

See this file for any additional information.

Typical Scenarios

Introduction

Publishing Vector
Data in WFS

Create a Shapefile
Provider on top of a Data
Directory

This chapter provides some common scenarios for setting up web
services for geodata. The examples rely on sample data used in real-
world situations.

The first four sections of this chapter are a step-by-step guide for
configuring web services over data. The following sections will optimize
and enhance the web services.

This section describes the steps needed to setup a web service over vector
data. At the end of the sequence, the service will be able to respond to WFS
requests (GetCapabilities, DescribeFeature Type, GetFeature) and to display
maps through WMS requests (GetCapabilities, GetMap, GetFeaturelnfo).

The Data Manager guide explains how to setup a vector provider on a
set of Shapefiles. See section "Service Provider Management
Questions" in that guide for the step by step explanations.

In this section, an example is provided, based on the sample data over
the city of Atlanta, installed with the product (if that option was chosen).

C:/Erdas/Apollo/data/erdas-apollo/shapes/atlanta

In the Shape File Selection panel, choose the directory containing the
sample Shapefiles on Atlanta: click "Browse Dir" and navigate to
data/erdas-apollo/shapes/atlanta”.

In the "Shape File SRS" field, select "NAD83/Georgia West State Plane
(ftUS)" or encode "EPSG:2240".
In the Basic Service Properties panel, enter the following values:
Name: ATLCITY
Title: City of Atlanta

Abstract: City of Atlanta, Shapefile Service setup using ERDAS
APOLLO

Keywords: Altanta,Buildings

In the Additional Service Properties panel, choose the "Autodetect
geometry types" option. Keep the other fields as proposed.

Next Steps:

The "Index data" option is selected by default. It creates RTree files
beside the shapefiles for optimized access. This operation can take
several minutes before completing. This action can be disabled and
taken later.

. After the creation is over, in the Edit panel, click "GetCapabilities" to

check that the service is properly initialized. An XML document should
appear. That document should declare a set of feature types: buildings,
centerline, parks_greenspace, places, trails.

* When a WFS service is defined, it can be opened in the Apollo Web
Client and the layers can be presented as WFS Layers.

* Adding Metadata to a WFS service allows to publish richer
information.

* Creating styles on vector data allows to expose it as WMS layers.
See Create Styles on Vector Data below for guidance.

In the Style Editor, you will notice that the futurelanduse and places do
not overlay the other layers (because the overlay has mismatched SRS
code and extent values). It is most visible when right clicking on those
layers and as "Frame the view to the layer". The "Envelope" pane
confirms that the coordinates for those layers are not in the Georgia
West State Plane but in WGS 84.

— trails (defaultstyle) £
[places (defaultstyle)
O3 huildinos (defaultstyle)

A =~
farter | [escendre SURRHmer

Echelle Al
Enveloppe F
SRS |EPSG:2240 =]
X Min. : |-84.5

¥ Min.: {33.7

X Max. : |-84.33

¥ Max, ; {32.9]

Create a Vector Provider
on top of Oracle Data

To fix this, you need to update the configuration of the provider to
indicate that the places and futurelanduse feature types use the
EPSG:4326 (WGS84) coordinate system, by doing this:

In the Data Manager, edit the provider using the guidance given in the
section "How do | edit an existing service provider"

Click on the ATLCITY provider you defined before.

In the Resources tab of the Edit view, click on the Resource named

generatedMapping.xml and click Edit.

Go to the <Info> section for the two impacted feature types.

Change the EPSG code for the SRS and BoundingBox properties, from
EPSG:2240 to EPSG:4326. Save the file.

In the Service Info tab, click on "Restart service" for the changes to be
applied. Restart the Style Editor and check the extents again.

When over with the style Editor, save your project into
C:/Erdas/Apollo/tools/styleeditor/projects

The Data Manager guide explains how to setup a vector provider on an
Oracle schema. See section "Service Provider Management
Questions" in that guide for the step by step explanations.

In this section, an example is provided, based on the sample data over
the city of Boston, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of Oracle data:

If the data is not yet in an Oracle database, take the sample file
<APOLLO HOME>/data/erdas-apollo/db/oracle/boston ora9.dmp
and import it in the Oracle9i Spatial or higher database. The command
could look like: imp user/pwd@sid File=boston_ora9.dmp GRANTS=N
FULL=Y

Data provided in the Shapefile format can be imported using the
Oracle shp2sdo tool.

. Whatever the data, this step is over when an Oracle schema is filled
with a set of tables, its rows, indexes and possible constraints, views,... .

Launch the Data Manager tool and follow the instructions.

In the Connection panel, fill the fields (most of the time, host, port, sid,
user and password suffice). Click the "Test Connection" button to verify
that the connection to the database succeeds.

In the "Default SRS" field, encode the value "EPSG:26986" (it
corresponds to Massachusetts State Plane in Meter).

In the Basic Service Properties panel, encode the following values:
Name: BOSTON_ORA
Title: City of Boston

Abstract: City of Boston, Oracle Service setup using ERDAS
APOLLO

Keywords: Boston, Oracle

In the Data Manager guide, the next step consists in defining additional
properties, including generating the types and mapping files. In the
current example, those two files are provided in the distribution.
Uncheck the "Generate types and mappings" button before clicking
"Finish".

The service is created and the Service Provider Editor view shows the
properties of the new service.

But a set of mapping and types files are needed for the WFS to be
properly configured. Choose the Data Source tab. Beside the "Mapping File"
field, click "Browse". Select config/erdas-
apollo/providers/vector/boston_ora.xml. Then, select the "Types
Schema" field, click "Browse". Select config/erdas-
apollo/providers/vector/boston ora.xsd.

Click the "Save" icon to persist the changes.

Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare a set
of feature types: highways, hydro, land_use, place_names,
protectedareas, roads.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

<iwfs:Title>Protected Areas</iwfs:Title>
<iwfs:Abstract>Polygons of Boston Protected
Areas</iwfs:Abstract>
<iwfs:Keywords>Boston, Protected, Areas</iwfs:Keywords>

Next Steps:

Create a Transactional
Provider over Oracle

* When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

* Adding Metadata to a WFS service allows to publish richer
information.

* Creating styles on vector data allows to expose it as WMS layers.
See Create Styles on Vector Data below for guidance.

This section explains how to convert a vector Oracle Provider (WFS
interface) onto a transactional service supporting updates of the data.
The main path updates the BOSTON_ORA provider defined previously
but a set of Notes describe alternatives if a custom data source is used
instead.

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to define a WFS-T based on an existing WFS over Oracle data:

. Add the BUSINESS and LOCKTIMEOUT tables to the Oracle schema.

To do this, execute successively the SQL script files
<APOLLO_HOME>/data/erdas-apollo/db/oracle/bus create.sqgl
and lock.sqgl. The first one will create the BUSINESS table, the
associated indexes and insert a small set of records in that table. The
second script will create the LOCKTIMEOUT table used to manage the
Locking mecanism.

v

In the alternative of a custom service, we assume one or more of
the existing tables will be made transactional. At this stage, you
need to check or adapt the table(s) so that one or more columns
identifies each row uniquely (whether or not it is configured as a
primary key). Moreover, if you want to enable the Locking
mechanism, an additional character-type column should be added.
The SQL statement could be: ALTER TABLE BUSINESS ADD
(LOCK_ID VARCHAR2 (255 BYTE));

Launch the Data Manager tool and follow the instructions in the Data
Manager guide, section "How to edit an existing service provider?".

Select the previously created "BOSTON_ORA" vector service. Display
the properties of this service in the Service Provider Editor View.

4. Adapt the content of the mapping file. To do so, select the "Data Source"
tab and click "Edit" beside the "Mapping File" field.

If the file relates to BOSTON_ORA, just uncomment the Mapping and
Info sections referencing BUSINESS at the bottom of the file. If
converting a custom table to make it transactional, the following
changes are needed:

+ If the primary key setting is set to <NoPrimary/>, replace that line
with an actual Primary Key definition. If the primary key column is
named "BUS_ID", it could be: <Primary name="BUS ID"
type="xsd:integer" fid="generated" />

The fid="generated" option is set to ensure unicity of the keys: each
time a record is inserted, the system will generate the key value.

* If Locking is enabled, add the following line to declare the
"LOCK_ID" column as locking flag key: <Lock
nameSQL="LOCK_ ID" />

* Ideally, the BUS_ID and LOCK_ID columns should not be mapped
to a feature property. To achieve this, remove the lines (if they were
ever created):

<Element name="wfs:BUS_ID" nameSQL="BUS ID"/>
<Element name="wfs:LOCK ID" nameSQL="LOCK ID"/>

* In the <Info> tag for your table, only the "Query" operation is
enabled. It should be extended to enable transactional-type
operations. To do so, add one or more of the following operation
types in a comma-separated list: Insert, Update, Delete, Lock.
Alternatively, replacing the whole set with just the "*" value enables
all operation types.

The end of the mapping file for BOSTON_ORA could look like this:

<Mapping>
<3QL name="wfs:BUSINESS">
<Table nameSQL="BUSINESS"/>
<Primary name="BUS ID" type="xsd:integer" fid="generated"
/>
<Lock nameSQL="LOCK ID" />
<Element name="wfs:NAME" nameSQL="NAME"/>
<Element name="wfs:TYPE" nameSQL="TYPE"/>
<Element name="wfs:STREET NAME" nameSQL="STREET NAME"/>
<Element name="wfs:BUILDING NBR" nameSQL="BUILDING_NBR"/>
<Element name="wfs:POSTCODE" nameSQL="POSTCODE"/>
<Element name="wfs:CITY" nameSQL="CITY"/>
<Element name="wfs:TELEPHONE" nameSQL="TELEPHONE"/>
<Element name="wfs:TOTAL EMPLOYEES"
nameSQL:"TOTAL_EMPLOYEES"/>
<Element name="wfs:GEOMETRY" nameSQL="GEOMETRY"/>
</SQL>

</Mapping>
<!--Info for type wfs:BUSINESS - to enable when table is created
-—>
<Info name="wfs:BUSINESS">
<Operations>*</Operations>
<SRS>EPSG:26986</SRS>
<BoundingBox SRS="EPSG:26986" minx="227317." miny="889948."
maxx="238670." maxy="901300."/>
</Info>

</xsd:schema>

Save the updated mapping file.

Synchronize the content of the Types Schema file, so that the
transactional table is declared with only the mapped properties
exposed. To do so, select the "Data Source" tab and click "Edit" beside the
"Types Schema" field.

If the file relates to BOSTON_ORA, just uncomment the xsd:element
and xsd:complexType sections referencing BUSINESS at the bottom of
the file. If converting a custom table to make it transactional, just make
sure the primary key (e.g. BUS_ID) and locking property (e.g.
LOCK_ID) only appear in this file if they have been mapped in an
<Element> tag in the mapping file. If not, remove those properties from
the feature type definition. Those lines look like this:

<xsd:element name="BUS ID" type="xsd:int">

</xsd:element>

<xsd:element name="LOCK ID" minOccurs="0" nillable="true"
type="xsd:string">

</xsd:element>

Save the updated types schema file.

Click "GetCapabilities" to check that the service is properly updated. An
XML document should appear. For BOSTON_ORA, that document
should declare a new feature type: wfs:BUSINESS.

For BUSINESS and for custom transactional tables, the permitted
operation set appears behind each FeatureType declaration, in a
<Operations> tag. The BUSINESS feature type declaration could look
like:

<FeatureType xmlns:wfs="http://www.ionicsoft.com/wfs">
<Name>wfs:BUSINESS</Name>
<SRS>EPSG:26986</SRS>
<Operations>
<Query/>
<Insert/>

Next Steps:

Create a
PostgreSQL/PostGIS
Vector Provider

<Delete/>
<Update/>
<Lock/>
</Operations>
<LatLongBoundingBox minx="-71.16892567638165"
miny="42.25904339835999" maxx="-71.03057571317116"
maxy="42.361722456564976" />
</FeatureType>

* Manual checks of transactional behaviour can be done with the
Service Tester applet (under http://localhost:8080/erdas-
apollo/servicetester). Sample and template operations are
provided in <APOLLO HOME>/data/erdas-apollo/db/
oracle/bus_insert.xml and bus_transac.xml.

* When a WFS-T service is defined, it can be opened in the ERDAS
APOLLO Web Client as a WFS, and the layers can be managed as
WEFS Layers: When information is requested on a feature, that
information holds links to allow edition, creation or deletion of
features.

The Data Manager guide explains how to setup a vector provider on a
PostgreSQL/PostGIS schema. See section "Service Provider
Management Questions" in that guide for the step by step explanations.

In this section, an example is provided, based on the sample data over
the city of Boston, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of PostgreSQL/PostGIS data:

If the data is not yet in a PostgreSQL database, take the sample file
<APOLLO HOME>/data/erdas-apollo/db/postgresql/

boston dump_ pg.sgl and import it in the PostgreSQL database. The
command could look like: cat boston_dump_pg.sql | psgl dbname,
where dbname is the database name where the tables are inserted.

Data provided in the Shapefile format can be imported using the
PostgreSQL shp2pgsql tool. The command could be: shp2pgsql -¢
path-to-my-shapefile.shp my-feature-type-name | psql dbname

For a PostGIS-enabled database, the alternate
boston dump pgis.sql Script should be used instead. Note that
a PostGIS-enabled PostgreSQL database contains the tables
geometry _columns and spatial_ref _sys in the user schema.

2. Whatever the data, this step is over when a PostgreSQL/PostGIS
schema is filled with a set of tables, its rows, indexes and possible
constraints, views,... .

3. Launch the Data Manager tool and follow the instructions.

4. In the Connection panel, fill the fields (most of the time, host, port,
database, user and password suffice). Click the "Test Connection"
button to verify that the connection to the database succeeds.

5. In the "Default SRS" field, encode the value "EPSG:26986" (it
corresponds to Massachusetts State Plane in Meter).

6. A set of mapping and types files are needed for the WFS to be properly
configured. Choose the Data Source tab. Beside the "Mapping File" field,
click "Browse". Select config/erdas-
apollo/providers/vector/boston pg.xml.

Then, select the "Types Schema" field, click "Browse". Select
config/erdas-apollo/providers/vector/boston pg.xsd.

7. Click the "Save" icon to persist the changes.

8. Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare a set
of feature types: highways, hydro, land_use, place_names,
protectedareas, roads.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

<iwfs:Title>Protected Areas</iwfs:Title>

<iwfs:Abstract>Polygons of Boston Protected
Areas</iwfs:Abstract>

<iwfs:Keywords>Boston, Protected, Areas</iwfs:Keywords>

Next Steps:

* When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

Create an ArcSDE Vector
Provider

* Adding Metadata to a WFS service allows to publish richer
information.

* Creating styles on vector data allows to expose it as WMS layers.
See Create Styles on Vector Data for guidance.

» Extending the provider to WFS-T. The procedure is in all details
similar to the Transactional Provider over Oracle. Just make sure to
use <APOLLO_HOME>/data/erdas-apollo/db/
postgresgl/bus_create pg.sql and lock pg.sqgl sql scripts
over PostgreSQL, and bus_create pgis.sgl and lock pg.sql
over PostGIS.

The key generation option fid="auto" (attribute of the "Primary"
property in the mapping file) is not supported for
PostgreSQL/PostGIS as this DBMS does not support the unique
identifier auto-generation option. Oracle does, based on UUIDs.

The Data Manager guide explains how to setup a vector provider on a
ArcSDE schema. See section "Service Provider Management
Questions" in that guide for the step by step explanations.

This section explains how to setup a vector Provider (WFS interface) on
an ArcSDE database over the city of Boston. Additionally, each Note
describes alternatives or additional operations if a custom data source
is used instead.

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy a WFS on top of an ArcSDE server:

Before configuring the service, it is necessary to add the ArcSDE SDK
library to the web app. This library is composed of a small set of jar files
available in the ArcSDE Installation Directory, under the lib folder. They
can be named jsdeXX_sdk.jar, jpeXX_sdk.jar, and possibly icu4j.jar
where XX is the version of ArcSDE.

Copy those jar files into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eas/WEB-INF/lib
(for APOLLO Essentials) or into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eaim/lib (for
APOLLO Advantage/Professional). Rebuild the erdas-apollo webapp
by running ant from <APOLLO_HOME> as described in Rebuilding
the Webapps and redeploy them into your servlet engine as described
in Deploying WAR Files on Supported Servlet Engines.

2.

If the data are not yet stored in a database or not yet configured as a
"feature class" in an ArcSDE server, start by loading it using one of the
methods described in the sample file

<APOLLO HOME>/data/erdas-apollo/db/arcsde/
bus_create sde.txt .Forthis scenario, use the BUSINESS Shapefile
included in that same sample data directory.

Data provided in the Shapefile format can be imported using the
ArcSDE shpZ2sde tool. The command could be:

shp2sde -o create -1 business,geometry -f BUSINESS -a all -G
26986 -e -p -u <username> [-k ERDAS]

Replace "<username> with the real ArcSDE login name. The value
"26986" expresses the projection system. The "-k ERDAS" option
is to be set if the default geometry storage method in the ArcSDE
server does not correspond to the requirements. For example, if
the underlying database is Oracle Spatial and the geometries are
to be stored as Oracle SDO_GEOMETRY type, create a new entry
in the ArcSDE DBTUNE table setting the
"GEOMETRY_STORAGE" property to "SDO_GEOMETRY" and
name it ERDAS. The -k parameter in the command refers to that
name. The alternative methods to populate data are either using
the sdetable and sdelayer commands or creating the SQL table
first and then registering it as a feature class. The commands are
illustrated in the bus_create_ sde.txt file and the SQL scripts are
bus_create ora.sql for ArcSDE/Oracle and

bus_create mssql.sql for ArcSDE/MS-SQL Server.

3. Whatever the data, this step is over when a ArcSDE database is filled

with a set of tables, its rows, indexes and possible constraints, views,... .

Launch the Data Manager tool and follow the instructions to create the
service, setting "BOSTON_SDE" as service name and "City of Boston"
as service Abstract and Title. The wizard creates an incomplete service.
It is necessary to Edit the provider properties and encode values.

In the Data Source tab, expand the Connect String property and fill the
sub-fields (most of the time, host, port, instance, user and password
suffice). Click the "Test Connection" button to verify that the connection to
the database succeeds.

6. A set of mapping and types files are needed for the WFS to be properly
configured. Choose the Data Source tab. Beside the "Mapping File"
field, click "Browse". Select config/erdas-
apollo/providers/vector/bus_sde.xml. Then, select the "Types Schema"
field, click "Browse". Select config/erdas-
apollo/providers/vector/bus_sde.xsd.

7. Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare a
feature type: business.

If additional Metadata are needed per layer, the mapping file
(generatedMapping.xml) should be edited to add such tags in each
<Info> section. Such an addition could look like:

<iwfs:Title>Businesses</iwfs:Title>
<iwfs:Abstract>Points of Boston Businesses</iwfs:Abstract>
<iwfs:Keywords>Boston,Business</iwfs:Keywords>

8. Click Save to persist your changes into the actual configuration file.

Next Steps:

* When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

* Adding Metadata to a WFS service allows to publish richer
information.

* Creating styles on vector data allows to expose it as WMS layers.
See Create Styles on Vector Data for guidance.

» Extending the provider to WFS-T. The procedure is similar to the
Transactional Provider over Oracle. Just make sure to use
<APOLLO_ HOME>/data/erdas-apollo/db/oracle/lock.sql sql
script over ArcSDE/Oracle, and
<APOLLO HOME>/data/erdas-apollo/db/
arcsde/lock mssqgl.sql over ArcSDE/MS-SQL.

More guidance on setting up an ArcSDE vector data source is given in
Provider Types

Create a Vector Provider The ERDAS APOLLO Data Manager Guide explains how to setup a
on top of GML Data vector provider on a GML file. See the section "Service Provider
Management Questions" in that guide for step by step instructions.

Next Steps:

In this section, an example is provided, based on the sample data
installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to deploy the ATLANTA WFS on top of GML data:

If the data is not yet in a GML file, use the sample file

<APOLLO HOME>/data/erdas-apollo/gml/
atlanta/atlanta2la.gml as GML file input. If the GML document has
to be produced, it can be generated through a GetFeature request on
any WFS service.

Along with the GML file, it is necessary to have an XML Schema file
holding the feature types definitions used in the GML document. That
schema could be referenced at the beginning of the GML file but it can
also be obtained through a DescribeFeatureType request on any WFS
service. In our scenario, the schema is provided beside the GML file
and is named atlanta.xsd. Use it as value for the "Type File" field.

In the Basic Service Properties panel, set the following values:
Name: ATLANTA_GML
Title: City of Atlanta
Abstract: City of Atlanta, GML service setup using ERDAS APOLLO
Keywords: GML service,Atlanta, Georgia,Buildings

A Mapping file could also be mentioned. In the case of a GML

provider, the gmli-to-datasource mapping is trivial, but that file can
be used to set additional information such as the data extent, some
metadata, The distribution includes such a mapping file, named
generic_sql mapping.xml and located beside the providers.fac .

Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare the
feature types buildings and roads.

* When a WFS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WFS
Layers.

* Adding Metadata to a WFS service allows to publish richer
information.

Create Styles on Vector
Data

» Creating styles on vector data allows you to expose it as WMS
layers. See Create Styles on Vector Data for guidance.

» For a GML provider to disable transactions, the "Disable
Transaction" property should be set to "true" in the Administration
Console.

More advanced information is provided in the "Provider Types"
chapter, for the GML and GML-T WFS - or Vector - Connectors.

Itis possible to use the ERDAS APOLLO Style Editor tool to create a
style bundle that can be used to render the vector data. To do that,
follow these steps:

Start the ERDAS APOLLO Style Editor Application

Right Click on Project; choose "Add Data Source" then “Web Feature
Server” and click “Next”

Input the URL of your service (e.g. http://localhost:8080/erdas-
apollo/vector/ATLCITY) and click “Add”, once your URL appears in
the upper window, click Finish.

The service and the defined feature types appear in the left pane.
Right click on each feature type name and choose "Add to preview".

The name will display in the Layers panel and the right panel map will
fill with graphic.

=lolx|
Projet Données Qutils Yues Fenétres Aide
Styles R] vuet|
4 Projet] I = ‘mi i
= atLcmy = ,,: 5
£ buildings U o =/ 4
A centerline 3
£ parks_greenspace
£ places
N
Couches ~
— trails (defaultstyle)
1 places (defaultstyle)
3 buildings (defaultstyle)
— centerline {defaultstyle)
T parks_greenspace (defaultstyle)
Manter [Fescerndre Supprifmer. |
Echelle Al
Envel Al
Locai «

It frequently appears that a feature type holds heterogeneous
geometries (such as lines and multi-lines), leading to an error
message when trying to display them. It can be avoided by
enabling the "forgiving" flag for the data source. Right-click on the
project name (e.qg. "ATLCITY") and choose "Properties" in the list.
In the panel, check the "forgiving" box.

5. To update one or more styles, right-click on the layer name in the
Layers view and choose Properties. A panel lets you configure your
style.

6. When you are happy with the rendering, deploy the styles using the
menu File -> Styles -> Deploy to Directory... . Choose the
<APOLLO_HOME>/config/erdas-apollo/rendering directory and click
Save. The set of styles will be copied there, allowing you to display nice
layers using the WMS GetMap interface.

When over with the Style Editor, save your project into
<APOLLO HOME>/tools/styleeditor/projects

Publishing Images
in WMS

Raster Images Starting with ERDAS APOLLO 2010, Raster Images services are no
longer served by the "map" servlet. They are now included in the set of
services provided through the "coverage" servlet. Please refer to the
"Publishing Raster data in WCS" section below for the step-by-step
sequence of setting up a Raster Images service.

Publishing Raster This section describes how to configure a Web Coverage Service
Data in WCS Provider to serve datasets and raster images through the WMS and/or
WCS interfaces.

Simple Coverage The Data Manager guide explains how to setup a raster provider on a
Services single image file.. See section "Service Provider Management
Questions" in that guide for the step by step explanations.

In this section, an example is provided, based on the sample data over
the city of Atlanta, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Add an Atlanta Tile (ECW)

Data Path: <APOLLO HOME>/data/erdas-apollo/coverages/
mosaic/atl tiles 1 l.ecw

1. After login, right-click on the Rasters node and choose Create Service.

2. Inthe Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

3. Select Single as Service type. Click Next.

4. Choose the Data located on the server option. Click the Browse
button beside the Raster File field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/
mosaic/atl_tiles_1_1.ecw and click OK.

5. As Raster SRS, either encode EPSG:2240 or click the Select... button
to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

6. Specify “Rockdale_Tile” as the Service Name, Rockdale as Title and
Abstract, Atlanta, Rockdale, ECW, 2240 as Keywords.

7. Inthe Select the main service properties panel, just click Finish.

8. After a few seconds, a new item named Rockdale_Tile is added under
the Rasters tree node. The right pane of the Data Manager displays the
properties of the newly created service.

9. Click the Get Capabilities link to see the Capabilities document (if you
see some kind of error please go back and check all of your input
parameters and retry).

v

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces

property.

Mosaic and List
Coverage Services

Use preconfigured MultiSimple Coverage Service

The ERDAS APOLLO Data Manager Guide explains how to setup a
raster provider on a list of image files. See the section "Service Provider
Management Questions" in that guide for step-by-step instructions.

In this section, an example is provided, based on the sample data over
the city of Atlanta, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Add Atlanta 2002 ECW data:

Data Path: <APOLLO HOME>/data/erdas-apollo/coverages/mosaic

EPSG:2240

Background Value: 0

. After loging in the Data Manager, right-click on the Rasters node and

choose Create Service.

In the Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

Select List as Service type. Click Next.

Choose the Data located on the server option. Click the Browse
button beside the Raster Dir field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/mosaic and click OK.

. As Raster SRS, either encode EPSG:2240 or click the Select... button

to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

In the main service properties panel, encode “ATLANTA_LIST 2002”
as Name, “Atlanta List” as Title and Abstract, “Atlanta, 2002, ECW,
2240” as Keywords.

In the main service properties panel, just click Finish. Notice that a
checkbox named Index data is checked, meaning that the collection of
images will automatically be indexed.

After a few seconds, a new item named ATLANTA_LIST 2002 is added
under the Rasters tree node. The right pane of the Data Manager
displays the properties of the newly created service.

Click the Get Capabilities link to see the Capabilities document (if you
see some kind of error please go back and check all of your input
parameters and retry).

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces

property.
IndexProvider scenario

The Data Manager guide explains how to setup a raster provider on a
list of image files. See section "Service Provider Management
Questions" in that guide for the step by step explanations.

In this section, an example is provided, based on the sample data over
the city of Atlanta, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Add Atlanta 2002 ECW data:
Data Path: <APOLLO HOME>/data/erdas-apollo/coverages/mosaic
EPSG:2240

Background Value: 0

1. After loging in the Data Manager, right-click on the Rasters node and
choose Create Service.

2. Inthe Service creation wizard panel, select Raster data as Service type
and File as Data source type. Click Next.

3. Select Mosaic as Service type. Click Next.

4. Choose the Data located on the server option. Click the Browse
button beside the Raster Dir field. Choose the tree
<APOLLO_HOME>/data/erdas-apollo/coverages/mosaic and click OK.

5. As Raster SRS, either encode EPSG:2240 or click the Select... button
to choose the NAD83/Georgia West State Plane (ftUS) projection.
Click Next.

6. Inthe main service properties panel, encode “ATLANTA_INDEX_ 2002”
as Name, “Atlanta Index” as Title and Abstract, “Atlanta, 2002, ECW,
2240” as Keywords.

ArcSDE-Raster

7.

In the main service properties panel, just click Finish. Notice that a
checkbox named Index data is checked, meaning that the collection of
images will automatically be indexed.

After a few seconds, a new item named ATLANTA_INDEX_2002 is
added under the Rasters tree node. The right pane of the Data
Manager displays the properties of the newly created service.

Click the Get Capabilities link to see the Capabilities document (if you

see some kind of error please go back and check all of your input
parameters and retry).

v

If the service is only intended to be used through the WMS
interface, open the Miscellaneous tab in the service properties
panel and uncheck the WCS box beside the Enabled Interfaces

property.

ERDAS APOLLO WMS supports serving raster data stored in ESRI

ArcSDE. This scenario describes how to set of a WMS over an ArcSDE-

Raster data source.

This scenario assumes:

* An ESRI ArcSDE server is running on a host named arc.sde.com.

* An SDE schema contains a table named BOSTON_SDER with a
raster column belonging to the SDE user "sdeusr" with the
password "sdepwd".

* The sample raster data on BOSTON are loaded.

« ERDAS APOLLDO is installed on another server and the erdas-
apollo.war archive is deployed.

Refer to Provider Types for more configuration information.

Environment Configuration

Before configuring the service, it is necessary to add the ArcSDE SDK
library to the web app. This library is composed of a small set of jar files
available in the ArcSDE Installation Directory, under the lib folder. They
can be named jsdeXX_sdk.jar, jpeXX_sdk.jar, and possibly icudj.jar
where XX is the version of ArcSDE.

Provider setup

Copy those jar files into <APOLLO_HOME>/webapps/erdas-
apollo/profiles/eas/WEB-INF/lib (for APOLLO Essentials) or into
<APOLLO_HOME>/webapps/erdas-apollo/profiles/eaim/lib (for
APOLLO Advantage/Professional). Rebuild the erdas-apollo webapp
by running ant from <APOLLO_HOME> as described in Rebuilding
the Webapps and redeploy them into your servlet engine as described
in Deploying WAR Files on Supported Servlet Engines.

Steps to deploy a WMS on top of an ArcSDE-Raster server:

The Data Manager guide explains how to setup a raster provider. See
section "Service Provider Management Questions -> How do | create a
new raster service provider?" in that guide for the step by step
explanations of the initial phases.

In this section, the steps specific to ArcSDE-Raster are described, and
an example is provided, based on the sample data over the city of
Boston, installed with the product (if that option was chosen).

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

. After loging in the Data Manager, right-click on the "Rasters" node and

choose "Create Service".

In the Service creation wizard panel, select "Raster data" as Service
type and "Database" as Data source type. Click "Next".

Select "ArcSDE (portable) Service" as Service type. Click "Next".

In the main service properties panel, encode the following values:
Name: BOSTON_SDER

Title and Abstract: City of Boston

Keywords: ArcSDE, Boston, Raster

Click "Next" then "Finish".

A provider type named "ArcSDE (native) Provider" also exists but
it is deprecated and implies a much heavier environment setup as
it uses native libraries (DLLs).

After a few seconds, a new item named "BOSTON_SDER" is added
under the "Rasters" tree node. The right panel of the Data Manager
displays the properties of the newly created service.

Populate, Browse
and Query the
Catalog

10.

The creation wizard is currently limited to a part of the steps
needed to create a valid ArcSDE-Raster service. The rest of the
work has to be done in the properties panel of the Data Manager
for that service, as described below.

In the "Data Source" tab of the properties panel, expand the Connect
String property and fill the sub-fields (most of the time, host, port,
instance, user and password suffice).

The layers to be published by the service need to be configured.
Expand the "layers" property and click on "Add Entry". Expand the
newly displayed node to show its sub-properties. Some of those
properties need to be filled, such as table and column. The proposed
values are:

SRS set to EPSG:26986

Title: SDE Raster Image on Boston
column: image

table: boston_raster

Refer to Provider Types for more capabilities. When done, click the
Save icon to persist your changes into the actual configuration file.

Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare a
layer named boston_ BOSTON_RASTER_image_null .

Next steps:

* When a WMS service is defined, it can be opened in the ERDAS
APOLLO Web Client and the layers can be presented as WMS
Layers.

» If there are several ArcSDE raster tables and several layers are to
appear in the service, there are two ways to do it. The first way is to
use a pattern as table value (e.g. "uk_%"), that will produce one
layer per raster table; the layer name will have the table name. The
second way is to explicitly define several "layers" properties by
clicking several times on the "Add Entry" link.

* Refer to Provider Types for more configuration information.
This section describes typical usage of the catalog through its web

interface. An exhaustive description of the Catalog Web Interface is
provided in the Catalog Web Interface section.

Authentication Although the default configuration of the catalog allows read-only
access to part of the content, it is usually necessary to authenticate to
get full access and enable specific operations, like publishing, updating
or management of the catalog.

1. On the main page of the catalog web interface, click on login.

wserdas ERDAS APOLLO

| All Services ;l | | | Search |

2. Then you have two text fields, the first (left to right) is the user name,
the second is for the password.

3. Finally, press enter or the ok button. If the authentication succeeds, the
username appears at the upper right of the page, aside the Logout
action. Otherwise, the message "Invalid login/password" stands beside
the two fields.

Publish a service If the logged in user has the required roles, he will be allowed to publish
data in the catalog. By default, roles that are granted these rights are
BABEL PUBLISHER and BABEL_ADMIN.

1. First, logged in with an user having one of the BABEL_PUBLISHER or
BABEL_ADMIN role.

2. On the upper left, use the Publish action.

e —

w“serdas ERDAS APOLLO

ErnwW 50N Admin admin | Logout

Please select a resource type and a resource to publish to the catalog.

Select rasource type : [wos x| LRL: [| [_Publish
WG

WFS

WS

WS

process
Eneric

3. The publish operation accepts various types of resources. This section
will focus on OGC Service publishing; publishing of other types of
resources will be covered in the Catalog Web Interface section.

Data Discovery

Using the drop-down list, specify the OGC service type to publish
(WMS, WFS, WCS). The “W*S” value will cause the publish process to
use heuristics to guess the service type from the URL (checking for the
presence of a “service” parameter, inspecting the structure of the URL).
If a specific value (WMS, WFS, WCS) is selected, it always overrides
the service type that may be inferred from the URL.

. Type in the service URL in the text field. It can be the URL of the

GetCapabilities operation, or simply the base URL of the service.

Press the Publish button or enter. The publishing process will start and
may take a while, depending of the size of the resources being
harvested.

. When the publish process is done, the interface is redirected to the

newly created object.

This section explains how to discover and browse resources stored in
the catalog. Advanced browsing scenarios are covered in the Catalog
Web Interface section.

Pressing CTRL+ALT keys while in the Browse panel will display
contextual help.

Go to the Browse panel. This panel is also available for anonymous
users.

Select the data type of interest in the drop-down list. This drop-down
lists the usual data types of interest, i.e. Vector, Map and Coverage
resources/services.

3. To search for vector data regarding road in Atlanta, select “Vector
layers” and type "road* Atlanta" in the search bar. Note that the wildcard
(") is used here to hit the road and roads words.

]
wderd
*eCradas ERDAS APOLLO
Browse Login
Wectar Layers '| |ruad* AMD atlanta H Search |
Page 1 2 > from a total of 14 records 3]
FeaTure Type RAILROAD £
Tags [ERDAS, APCLLC, Vector, Cherokee, Cracle, 2006]
FeaTuRE TYPE Roadls 1
Tags [ERDAS, APOLLO, vector, shapefie, Cherokee]
FEATURE T¥PE Roads %>
Tags [ERDAS, APCLLO, Vector, Cherckee, Oracle]
W FEATURE T¥PE Roads53 <

At any point while browsing the catalog, icons on the upper right of the
browse area provide quicklinks to other representations of the current
record(s), in KML, GeoRSS, or for a direct view in GoogleMaps (if the
catalog server is publicly available).

»NE

As an example of use, the current query on “road AND Atlanta” can be
exported to GeoRSS. By doing so, the resulting GeoRSS resource will
represent a feed that can alert you any time a new resource matching
that query is registered in the catalog.

At the top of the browsing area, paging links are displayed when the
number of results is too big for a single page display. They offer an easy
way to quickly go through a large result set.

. Page« < 9710)/111/12)13) 14 |15]/16)/17 /18] > » frarn more than S00 records

By default, no more than 500 records are counted. If you really need to
browse further, or to know the actual total number of results, simply
browse to the last page, as this will force the counting of the whole result
set.

Using the CSW endpoint

Assembling
Services and
Combining Data

Pyramid WMS

Cascading with an
OpenGIS WMS Context

This section explains how to use the CSW endpoint to discover data.

The CSW endpoint is available out of the box at the URL
http://<serverURL>/apollo-catalog/wrs/WRS. Requests
compliant with the OGC CSW 2.0.2/ebRIM 1.0 Application Profile can
be sent to this endpoint.

To easily test those requests, a CSW test page is available in the
catalog web interface. This page provides a convenient way to send
requests using HTTP POST on the CSW endpoint; it also contains a set
of sample CSW requests.

This page can be accessed by logging as admin in the web interface,
and then click on the CSW tab. Please see the Testing the CSW
endpoint section for details on how to use the catalog web interface.

This section describes the Pyramid WMS and Cascading WMS.

A common situation encountered is having multiple resolutions of an
image or a set ofimages. There is a trade-off between performance and
the size of the image being served. The request's map scale determines
the need to serve a larger, high-resolution image or a smaller, low-
resolution image. Raster pyramiding can be used to define a scale
range and output resolution for quick access and display of very large
images.

The Pyramid Provider connector acts as a proxy provider on top of one
or more providers and chooses among the providers for each request
depending on the scale. Therefore, it is necessary to configure one
provider for each different data sources and display scale plus the
pyramid provider itself.

The Pyramid Builder tool automatically creates an optimized pyramid of
Geotiff files from a layer of images. Refer to Provider Types for the
steps needed to configure a Pyramid Provider. Refer to Chapter 14
"Tools and Viewers", Section 11 "Pyramid Builder" for the steps needed
to create a pyramid with the Pyramid Builder.

A WMS provider can be set up on top of an OGC WMS Context file or
a URL that serves Context. Various OGC-WMS compliant tools are
available to build a Context file, including the ERDAS APOLLO Style
Editor and Geoviewer. These tools are part of the ERDAS APOLLO
distribution. See the "ERDAS APOLLO Style Editor User Guide" and
"Geoviewer User Guide."

Chaining Services

Proxying a OpenGIS-
compliant WMS

> Wb

10.

1.

Refer to Provider Types for an example of configuring a Context
Provider.

This section explains how to configure services that will chain other
existing OGC-compliant WMS, WFS and WCS.

To proxy an existing OGC-compliant WMS, use the ERDAS APOLLO
Data Manager to define and configure a WMS Proxy provider. The
distribution predefines such a service named PROXYDEMIS. To define
your own use the following steps:

This workflow is no longer performed through the Administration
Console.

Open the DataManager
Connect to your running ERDAS APOLLO Server
In the Explorer tab, open the tree and the Services node

On the Maps & Proxies tree node, right-click and select Create
Service

Leave the Service type field set to Maps & Proxies, and select the
Advanced Data source type

Click Next and leave the service type to Proxy Service,

Click Next and enter the basic information for the proxy service (e.g.,
PROXYDEMIS)

Click Finish

Your new proxy service has been created. Go to the Explorer tab, and
select it in the tree. Right click on it, and select Edit Provider

In the Data Source properties tab, enter the URL of the WMS service
that is being proxied

Save your modifications, and reload the service

Other parameters can be configured to enhance the proxied service,
including:

+ LIMITEDSIZE

* LIMITEDCOLOR

Proxying a OpenGIS-
compliant WFS

I

10.

1.

« LIMITEDTRANSPARENCY
- REMOVE_MAP_FORMAT
- REMOVE_SRS

- REMOVE_INFO_FORMAT
. USER

- PASSWORD

For a complete definition of the parameters, see Detailed Parameters
of a Provider.

To proxy an existing OGC-compliant WFS, use the ERDAS APOLLO
Data Manager to define and configure a WFS Proxy provider. The
distribution predefines such a service named PROXYWORLD. To
define your own use the following steps:

This workflow is no longer performed through the Administration
Console.

Open the DataManager

Connect to your running ERDAS APOLLO Server

In the Explorer tab, open the tree and the Services node

On the Vectors tree node, right-click and select Create Service

Leave the Service type field set to Vectors, and select the Advanced
Data source type

Click Next and select the Proxy Service service type

Click Next and enter the basic information for the proxy service (e.g.,
PROXYWORLD)

Click Finish

Your new proxy service has been created. Go to the Explorer tab, and
select it in the tree. Right click on it, and select Edit Provider

In the Data Source properties tab, enter the URL of the WFS service
that is being proxied

Save your modifications, and reload the service

SLD Portrayal Service for
Features and Coverages

Producing Smart
Maps

WMS by Portraying
Features

Other parameters can be configured to enhance the proxied service,
including:

+ TITLE

+ ABSTRACT
+ KEYWORDS
+ CONTACT

+ USER

+ PASSWORD

For a complete definition of the parameters, see Detailed Parameters
of a Provider.

The SLD Portray Provider does not hold any data; it simply forwards
requests to a WFS or a WCS, ingests a collection of features or
coverages, and portrays them using the SLD document. The SLD
document is submitted along with the GetMap request and produces an
image in the format requested. A Portray Provider is pre-configured in
the ERDAS APOLLO distribution and is accessible at:
http://localhost:8080/erdas-apollo/map/PORTRAY.

SLD Portray Service requires an SLD document. See Portrayal
Capabilities, section "Languages" for the whole set of supported tags.

To set up a new Portray Provider or to modify the pre-configured one
refer to Provider Types, the "Portray Provider" section.

This section presents ways to improve the quality of maps produced
using WMS.

This scenario assumes a WFS is available and responds successfully
to GetCapabilities, DescribeFeatureType and GetFeature requests. To
display maps, instead of obtaining GML documents describing features,
create portrayal styles that instruct the WFS how to transform the
requested features.

To create styles, follow these steps:

Set the root directory where the WMS servlet will search for styles.
Openthe providers. fac file and set the DIR attribute of the <STYLE>
element in the <CONFIGURATION> section to a path on the system
where styles will be stored. The default is
<APOLLO_HOME>/config/erdas-apollo/rendering .

2. Start the ERDAS APOLLO Style Editor. Add a WFS Data Source by
entering the service URL. For example: http://locahost:8080/erdas-
apollo/vector/ATLANTA_VECTOR . The various feature types defined
on that server will be displayed. Use the ERDAS APOLLO Style Editor
to create styles for each of the feature types that will be displayed in
map requests. See The ERDAS APOLLO Style Editor for details on
exploring and styling data.

3. When finished, select File > Styles > Create Bundle. This will create a
.gar file. Save this file in the styles root directory of the WFS (Step 1).

4. To view the stylized features, discover the service as WMS in the
ERDAS APOLLO Web Client and select one of the newly-styled layers
for addition in the map.

Map Dressing Service The Map Dressing Service adds a grid, scale bar, border or north arrow.
Use the ERDAS APOLLO Style Editor to build portrayal styles for a
WES that will contain these presentation elements or output them from
a distinct service independent of the existing data sources. The Map
Dressing service behaves in exactly the same way as an OGC-
compliant WMS. The only difference is that the Map Dressing service
has no data and builds the map on-the-fly for each request using a
configuration file.

The ERDAS APOLLO distribution provides a pre-configured Map
Dressing provider that is configured to respond to requests at
http://localhost:8080/erdas-apollo/map/MAPDRESSING.

Read the content of the WMS capabilities that is returned from a
GetCapabilities request from that service, to determine what layers and
styles are provided. See Using the Map Dressing Service for a more
detailed description of the parameters to include in a request. That
chapter also explains how to adapt the configuration of a Map Dressing
Service to add a custom north arrow or define new styles with
predefined values for some of the parameters.

Advanced Portrayal Classical portrayal aims at rendering features or coverages to produce
realistic maps. To improve map branding or apply more complex
processing, use the Advanced ERDAS APOLLO Portrayal Engine.
Advanced portrayal configuration includes:

* Legend Display

* Choice of Symbols from a large, extensible symbol library

* General Range and Discrete Classifications

* Road-Oriented Range and Discrete Classifications

Sample WFS
Requests with
Filters

Filter by FeaturelD

» Patterner for area rendering

+ Symbol Roller to display one or more symbols along a line
» Variable Markers and Numbers for point display

* And much more

The ERDAS ERDAS APOLLO Style Editor allows interactive
configuration to create rules that will produce professional cartographic
output. These custom rules can be added to the style library and
reused.

To output GML from a WFS, build and run GetFeature requests, as
specified in the OGC WFS 1.0.0 Implementation Specification using
"Filter" expressions as specified in the OGC Filter Encoding 1.0.0
Implementation Specification. Note that the Filter Encoding syntax is
used for other types of OGC-compliant requests such as performing
transactions or locks on a WFS or using SLD in WMS.

This section describes how to build WFS requests using filters. The
examples below are based on the BOSTON_ORA database defined
earlier. Following each scenario is a GetFeature request with a different
type of Filter and an explanation of the content of that request.

The Boston County Tax Office has examined the city maps that are
being published on the Internet using WFS and has discovered that a
few of the rivers are misrepresented. The Office informs the data
publisher about which river names, IDs and related place names need
to be reviewed. The data publisher can use a FeaturelD matching
request to extract the properties of these river features as follows:

<?xml version="1.0" encoding="UTF-8" 2>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFS" >
<ogcwfs:Query typeName="hydro">
<ogc:PropertyName>HD ID</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>
<ogc:FeatureId fid="hydro.337" />
</ogc:Filter>
</ogcwfs:Query>
<ogcwfs:Query typeName="place names">
<ogc:PropertyName>PLACES ID</ogc:PropertyName>
<ogc:PropertyName>NAME</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>

Filter Equal to an
Alphanumeric Property

<ogc:Featureld fid="place names.18" />
</ogc:Filter>

</ogcwfs:Query>

</ogcwfs:GetFeature>

In this GetFeature request, the data publisher issues a query that
addresses the "hydro" and the "place_names" feature types where the
output is restricted by explicitly providing column names inside
<ogc:PropertyName> element tags. In the "hydro" query, the data
publisher adds an <ogc:Filter> to output a single feature with the feature
Identifier (fid) equal to "hydro.3930". Similarly, the "place_names"
output is restricted to the feature with fid equal to "place_names.3135".
The output will be a single "hydro" feature and "place_names" feature.

The Boston Tax Office has also asked the data publisher to provide
demographic analysis for the Mattapan neighborhood . To do this, the
data publisher would build a request on a single feature type that is
filtered on an alphanumeric property using the OGC comparison filter
for equality - PropertylsEqualTo.

<?xml version="1.0" encoding="UTF-8" 72>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFs" >
<ogcwfs:Query typeName="place names">
<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>NAME</ogc:PropertyName>
<ogc:Literal>MATTAPAN</ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

In the request, the data publisher uses the "place_names" feature type.
The <ogc:PropertylsEqualTo> Filter receives two arguments:

PropertyName: This contains the name of the feature type property to
filter against. This can be written either as a string ("NAME") prefixed
with the feature_type name ("place_names.NAME") or prefixed with the
namespace ("wfs:NAME"). Refer to next example for details on creating
a fully-qualified filter property. Literal: Yhis is used to compare against
the property name.

For more information on the filter operator names and arguments, refer
to the "ERDAS APOLLO Server Concepts Guide."

Filter Equal with
Namespaces

Filter on Two
Alphanumeric Properties

Feature schema managed by the WFS are typically more complex than
the sample data (BOSTON_ORA) environment and could contain a
hierarchy of feature types and properties whose definitions are spread
over several schema documents. Avoid ambiguity with well-defined
feature type names or properties. For example, add the namespace
prefixes to the feature name types and properties using the same
request from the previous example. Each namespace prefix
corresponds to a schema document removing the ambiguity related to
features with similar names, but in a different hierarchy.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
xmlns:wfs="http://www.erdas.com/wfs"
version="1.0.0"
service="WF3S" >
<ogcwfs:Query typeName="wfs:place names">
<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>wfs:place names.NAME</ogc:PropertyName>
<ogc:Literal>MATTAPAN</ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

In this request, the namespace "http://www.erdas.com/wfs" is defined
and assigned the prefix "wfs" in the <ogcwfs:GetFeature> attribute.
This namespace corresponds to the highest level feature type schema
of this WFS (see boston_ora.xsd).

In the remainder of the request, each reference to a feature type is
prefixed with "wfs:" and each feature property prefixed with the feature
type name. This allows the data publisher to have more than one
feature type with the same property name and more than one schema
with the same feature type name.

The data publisher wants to enable a query in the WFS so the public
can locate parks based on specific criteria. In this example, the query is
to select parks that are protected areas and larger than 100,000 square
meters. The Filter request is on a single feature type "protectedareas"
where the SITE_NAME must end with "PARK", and the AREA must be
larger than 100,000 square meters. To retrieve the sites that match both
criteria, the filters are combined with the AND logical operator.

<?xml version="1.0" encoding="UTF-8" 72>

<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"

Geometry Filter:
Operator BBOX

version="1.0.0"
service="WFS" >
<ogcwfs:Query typeName="protectedareas">
<ogc:PropertyName>AREA</ogc:PropertyName>
<ogc:PropertyName>COUNTY COD</ogc:PropertyName>
<ogc:PropertyName>SITE NAME</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>
<And>
<ogc:PropertyIsLike>
<ogc:PropertyName>SITE NAME</ogc:PropertyName>
<ogc:Literal>%PARK</ogc:Literal>
</ogc:PropertyIsLike>
<ogc:PropertylIsGreaterThan>
<ogc:PropertyName>AREA</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>
</ogc:PropertylsGreaterThan>
</And>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

To query for the "protectedareas" feature type, the request specifies the
"typeName" attribute in the <ogc:Query> element. Adding
<ogc:PropertyName> elements just after the <ogcwfs:Query> restricts
the output properties to the AREA, COUNTY_CODE, SITE_NAME and
GEOMETRY.

The <ogc:Filter> block starts with the <AND> logical operator with two
arguments. Refer to the ERDAS APOLLO Concepts Guide for more
information on logical operators, including AND.

The first comparison uses the "PropertylsLike" operator that makes a
pattern comparison. The query is for protected areas whose
SITE_NAME ends with "PARK."

The second operator, "PropertylsGreaterThan," allows comparison
with numeric values. The query is for protected areas where AREA is
greater than 100,000 square meters.

In the BOSTON_ORA sample database, four feature types meet the
first criteria and two of those have an area of more than 100,000 square
meters: FRANKLIN PARK and DORCHESTER PARK.

The Boston Tax Office asked the data publisher to extract information
in a given area (around Mattapan) to examine the existing
infrastructure. The data publisher knows that Mattapan has a
rectangular boundary with specific coordinates and formulates a
request to query for highways and place names within the bounding
box, or spatial extent, of the area.

<?xml version="1.0" encoding="UTF-8" 2>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFs" >
<ogcwfs:Query typeName="place names">
<ogc:PropertyName>NAME</ogc:PropertyName>
<ogc:PropertyName>COUNTY</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>
<ogc:BBOX>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<gml:Box>
<gml:coordinates>233000,890000
235000,892000</gml:coordinates>
</gml:Box>
</ogc:BBOX>
</ogc:Filter>
</ogcwfs:Query>
<ogcwfs:Query typeName="highways">
<ogc:PropertyName>RT NUMBER</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>
<ogc:BBOX>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<gml:Box>
<gml:coordinates>233000,890000
235000,892000</gml:coordinates>
</gml:Box>
</ogc:BBOX>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "place_names" and "highways" feature
types and the output properties are restricted using the
<ogc:PropertyName> element.

For each feature type, the <ogc:Filter> block uses the "ogc:BBOX"
element to specify the query's spatial operator. This operator is
intended to restrict the feature extraction to the given Bounding Box.
The first argument must be a geometric property name ("GEOMETRY"
in the example) and the second argument must be a <gml:Box>
element that provides an extraction rectangle defined by the
coordinates for the lower-left and upper-right corners.

This request returns a GML document composed of a place_name,
"MATTAPAN", with six highway sections.

Figure 3: A BBOX Filter Request

1000 + 2350&5. jll&m 37000
& L"‘ 000
9 2
-
NEPONSET,
-
SHMONT
n

00
20

Y

400 0 400 8fjegnoo
e '

236000 _r_{/ |23?ouc
Geometry Filter: The Boston Environmental Office receives a message that commercial
Operator Intersects with ground transportation around Boston has been re-routed and that
a Given Polygon. several of the highways are experiencing increased traffic volume.

There is concern that this could pose a threat to some of the
environmentally protected areas that intersect the highways. The Office
has asked the data publisher to extract those protected areas crossed
by major highways.

The data publisher creates a request on a single feature type,
highways, with a filter on the geometric property, a LineString, to extract
the features intersecting a given polygon.

<?xml version="1.0" encoding="UTF-8" 72>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFS" >

<ogcwfs:Query typeName="protectedareas">
<ogc:PropertyName>SITE NAME</ogc:PropertyName>
<ogc:PropertyName>COUNTY</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<ogc:Filter>
<ogc:Intersects>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<gml:Polygon srsName="EPSG:26986">
<gml:outerBoundaryIs>
<gml:LinearRing srsName="EPSG:4326">
<gml:coordinates>233200,891700 233700,891600 234050,892400
234100,893600 233600,893700 233300,892900
233200,891700</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryIs>
</gml:Polygon>
</ogc:Intersects>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "protectedareas" feature type. The
SITE_NAME, COUNTY and GEOMETRY properties from the feature
type will be extracted.

The query finds the intersection (ogc:Intersects) of the protected areas
GEOMETRY and a polygon (gml:Polygon) that surrounds the area of
interest. The image below shows the geographic extent of the request.

This request produces a GML document composed of four protected
areas features.

Figure 4: A Filter to Intersect with a Polygon

000 + |23s008 . L p ‘cm 3700¢
¥/)
J‘IlL 1‘ "‘
(]
30 NEPONSET,
BASHMONT
L]
"
0 of
N E
/”MATT PAN
_B9100 (/
FORBESHWHARF~—"
|
0 Q 400 0 400 afegoon
= ke .

23000 234800 235000 236000 _{/’ |23?cruc

Geometry Filter: The data publisher's boss would like to spend the upcoming weekend
Operator Beyond a Given taking a walk and a swim somewhere in Boston county. He asked the
Point data publisher to find a location in the county that is close to a body of

water and the office location.

The data publisher requests the feature type that includes rivers and
lakes and applies a filter to the geometric property to extract the
features which are not beyond a defined distance from the office.

<?xml version="1.0" encoding="UTF-8" 72>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFs" >
<ogcwfs:Query typeName="hydro">
<ogc:PropertyName>*</ogc:PropertyName>
<ogc:Filter>
<ogc:Not>

<ogc:Beyond>
<ogc:PropertyName>GEOMETRY</ogc: PropertyName>
<gml:Point srsNAME="EPSG:26986">
<gml:coordinates>234500,890000</gml:coordinates>
</gml:Point>
<ogc:Distance>500</ogc:Distance>
</ogc:Beyond>
</ogc:Not>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

The request applies to the "hydro" feature type. The data publisher can
obtain all hydro properties by providing a wild card ("*") in the
<ogc:PropertyName> element.

The search consists of locating water bodies that are not beyond
(operators ogc:NOT and ogc:BEYOND) 500 meters from a given point.
The <ogc:NOT> operator is unary and takes a single argument. The
<ogc:BEYOND> operator requires three arguments: the feature
geometric property (GEOMETRY), a geometry for the spatial operation
(<gml:Point> geometry), and a distance (ogc:Distance). The image
below shows the starting point and the area that matches the distance
parameter.

The current OGC WFS and Filter Encoding specifications do not
support spatial "Joins". Otherwise, the office location geometry
could have been used instead of a gml:Point geometry.

Figure 5: A Filter to not be Beyond a Point

4000 + E&WJE_ L #jllhﬂ ﬁ;ﬁﬁ
A

2. | \°®
-

ISHMONT

n

00

i~

T

(’ ;
FORBESA FI;/ﬂE/

RF~—
-+

1)

‘! 400 0 400 Efgomoo
1 ':‘:_h | — d
4800 szm 236000 _{/ |23?ouc
Filter combining Spatial There has been an accident in Boston involving a truck carrying
and Non-Spatial hazardous materials. The data publisher has been asked to locate the
Operators roads that intersect the accident and prioritize road closures based on

road classification.

A Filter is applied to the "roads" feature type using the
"PropertylsBetween" operator. The "Crosses" operator is applied to
locate all the roads that are crossed by the spill.

<?xml version="1.0" encoding="UTF-8" 72>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFs" >
<ogcwfs:Query typeName="roads">
<ogc:PropertyName>STREETNAME</ogc:PropertyName>
<ogc:PropertyName>CLASS</ogc:PropertyName>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>

<ogc:Filter>
<ogc:And>
<ogc:PropertyIsBetween>
<ogc:PropertyName>CLASS</ogc:PropertyName>
<ogc:LowerBoundary>
<ogc:Literal>2</ogc:Literal>
</ogc:LowerBoundary>
<ogc:UpperBoundary>
<ogc:Literal>3</ogc:Literal>
</ogc:UpperBoundary>
</ogc:PropertyIlsBetween>
<ogc:Crosses>
<ogc:PropertyName>GEOMETRY</ogc: PropertyName>
<gml:LineString srsName="EPSG:26986">
<gml:coordinates>232900,894000 235500,892750
237000,891000</gml:coordinates>
</gml:LineString>
</ogc:Crosses>
</ogc:And>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

This request applies to the "roads" feature type. The STREETNAME,
the road CLASS and the GEOMETRY of the roads will be extracted.

The search consists of applying the AND operator to two filters. The first
filter restricts the roads to Class 2 and 3. The second filter uses the
"Crosses" spatial operator. The parameters for <ogc:Crosses> are the
feature property name (GEOMETRY) and the geometry to compare
against. The result is a LineString representing the Class 2 and 3 roads
impacted by the spill.

Figure 6: A Filter to Cross a LineString

Advanced Scenarios

Introduction

Protecting Data

Disabling Interfaces

Once the typical scenarios of ERDAS APOLLO product are mastered,
it will be possible to create additional configuration environments for
specific tasks and functions. The following scenarios provide additional
steps for enhancing and managing data and services.

This Chapter describes additional configuration environments for
specific tasks and functions. The following scenarios provide additional
steps for enhancing and managing data and services.

* Protecting the Data.

» Advanced Filtering in GetMap requests.

+ Creating a Custom SRS.

* Adding Functions for more processing by your WFS.

Data often has a commercial and/or legal value and, therefore,
protecting data is a major concern for data providers. This section
describes a set of configurations that provide restrictions on published
data.

» Disabling some of the request types that can be sent to the service
* Hiding columns to show only a subset of the underlying data

« Disabling output formats to prevent the actual data from being
extracted

* Adding a Copyright or a Watermark
Service Providers over vector data (Shapefile, Oracle) automatically

support the OGC-WMS and OGC-WFS interfaces. This means that a
user can request maps as well as features in GML or Shapefile.

A data provider may want to allow map output but not deliver the vector
data as features, or, conversely, provide access to data but restrict the
ability to create a map.

WFS Operations:

Hiding Columns

Those restrictions can be activated by setting the "Disabled Interfaces"
field of the "Security Info" tab page of the provider definition in ERDAS
APOLLO Administration Console. Supported parameter values are
"wms", "wfs" or "wms,wfs". This disable the associated set of request
types: for "wms", the WMS GetCapabilities, GetMap and
GetFeaturelnfo and for "wfs", the WFS GetCapabilities,

DescribeFeatureType, GetFeature, LockFeature and Transaction.

In the mapping file of the WFS Provider, the <Operations> tag in the
<Info> section of each feature type contains the list of supported WFS
operations. The value "*" enables all operations, query and
transactions. Operation values are Query, Insert, Update, Delete and
Native. Below is an example for "wfs:roads" from an Oracle provider
mapping file.

<!--Info for type wfs:roads-->

<Info name="wfs:roads">

<Operations>Query, Insert</Operations>

<SRS>EPSG:26986</SRS>

<BoundingBox SRS="EPSG:26986" minx="227317.38" miny="889948.26"
maxx="238669.29" maxy="901300.18"/>

</Info>

WMS Operations:

By default, a WFS Provider supports the three basic WMS request
types including GetFeaturelnfo. To restrict the allowed request types,
set the <Queryable> tag to "false" in the <Info> tag of the feature type.
This sets the "queriable" attribute to "0" in the WMS capabilities
document and GetFeaturelnfo requests on that feature type are denied.

Example: <Queryable>false</Queryable>

When a vector provider's mapping file is created using SQL mapping or
the FromSQLGenerator tool, the mapping between the feature type
attributes and the table columns is often one-to-one. However, it is
possible to hide some of the columns to prevent disclosure of useless
or critical information or produce lighter results.

To achieve this, create explicit mapping and schema files:

* In the Mapping file, remove the corresponding <Element> and
<Geometry> lines for the mapping of any columns that should be
hidden.

Disabling Output
Formats

Adding a Copyright or a
Watermark

* Inthe Schema file, remove the declaration of the properties that are
no longer mapped with a column name.

Submit a DescribeFeatureType request to see that the removed
properties are no longer visible. A GetFeature request will confirm that
the corresponding column values are hidden.

When the provider is configured, the servlet will automatically publish,
in the WMS Capabilities document a set of formats in which the maps
or feature information can be requested. This set of formats can vary
depending on the underlying data type, raster, vector or coverage.

There may be a requirement to remove some of the formats and reject
requests asking for those formats. This can be done easily by setting
the "Hidden Map Formats" and "Hidden Info Formats" fields in the
"Styling Info" tab page of the provider definition. The values are a
comma-separated list of format names. For raster formats, the possible
values are GIF, JPEG, PNG, SVG, TIFF, WBMP and XBMP. These
correspond respectively to the mime-types image/qif, image/jpeg,
image/png, image/svg+xml, image/tiff and GeoTIFF,
image/vnd.wap.wbmp and image/x-bmp. For information formats, the
values are GML, HTML, TXT and XML, and correspond respectively to
the mime-types application/vnd.ogc.gml, text/html, text/plain and
text/xml.

If all the possible formats are disabled, the service capabilities
document will become invalid against the DTD or schema. In
addition, the client applications could behave strangely when
querying the service.

When maps are produced by the service, the owner of the service could
expect the intellectual property of that map to be preserved. Several
ways exist, in ERDAS APOLLO, to burn a text of an image into a map
or GML document.

A first and fast method, you can simply set the "Copyright" field in the
"Security Info" tab page for the definition of your service in ERDAS
APOLLO Administration Console. The value is a free text string that will
appear in the upper left corner of the image if you request a map, orin
the header of your GML document if you extract features.

This solution is limited to textual copyright, and the appearance of the
text cannot be configured.

A second solution applies if you are managing vector data layers and
want a raster image to be added to the output: the concept of map
dressing is used, and the ERDAS APOLLO Style Editor tool is the most
straight-forward means of doing that, through the following sequence:

Creating a Custom
SRS

N o o A 0 DN

Add your service as a "Data Source" using the ERDAS APOLLO Style
Editor

Right mouse button click on the data source
Choose "Dressing Style Properties" in the Menu
Choose "Arrow" tab

Select a Symbol

Select the position for the symbol

You new have a watermark burnt into the map

If you are managing raster data layers, you can still use the map
dressing solution, but through the definition of a new north arrow
symbol and by building a Web Map Context document. The procedure
could be:

In the rendering directory of ERDAS APOLLO, copy the directory
\\Apollo\rendering\mapdressing\collection\northarrow\arrow into
\\Apollo\rendering\mapdressing\collection\northarrow\copyright

Edit the SVG.prop and substitute the SymbolName with your own
symbol

Add your own data source into the ERDAS APOLLO Style Editor using
"Add Map Source"

Add the recently modified mapdressing service into the ERDAS
APOLLO Style Editor using "Add Map Source"

Compose the map adding new layers in the view
Save the context file (File -> Export Context)

Create a new provider based on the created context.

This section describes how to configure services to manage coordinate
transformations. The SRS parameters must be known in order to define
it in the system, for example, name="NAD27 / Alaska", units="meters",
geoid="NAD27", projection="Albers Conical", central meridian="154.0
degrees West", latitude of origin="50.0 degrees North", south-most
parallel = "55.0 degrees North", north-most parallel = "65.0" degrees
North. Follow these steps to create a custom SRS.

Determine if the SRS is pre-defined. ERDAS APOLLO includes most of
the EPSG transformations. Refer to the epsg.org database to
determine if the required Coordinate Transformation Service (CTS) is
listed.

If the desired transformation is not included in the EPSG list, modify the
SRS reference file usersref.xml located at
<APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-
INF/classes/com/ionicsoft/sref/impl/resource. The usersref.xml will
contain all custom SRSs. If that file already exists, verify that the new
SRS is not already defined. If the usersref.xml does not exist yet,
extract the ionicsref.xml file from the cots-srs.jar archive located in
<APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-INF/lib and
copy it to <APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-
INF/classes/com/ionicsoft/sref/impl/resource. Rename it to
usersref.xml and remove all definitions.

Open the usersref.xml file with any XML or text editor. Add the new
SRS definition to the file. The entry of the SRS information is fairly
simple. Create an entry in the usersref.xml file that specifies the
following elements.

* ID of the projection: 40000 (Choose a number greater than or equal
to 40000 to avoid collision with an existing SRS.)

* Name of projection: NAD27 / Alaska

* Central meridian: -154.0 (154.0 degrees West)

* False easting value: 0.0

» False northing value: 0.0

» Latitude of origin value: 50.0 (50 degrees North)

» Standard parallel values: 55.0 and 65.0

Below is the entry for the custom SRS as it would appear in the

usersref.xml file. To add a custom entry, simply copy and paste any
existing SRS and modify the values.

<?xml version="1.0" encoding="utf-8" 72>
<SREF>

<PROJCS ID="40000" NAME="NAD27 / Alaska">
<UNIT ID="9001" />

<GEOCS ID="4267" />

<PROJECTION NAME="Albers Conical">

<PARAMETER NAME="central meridian" VALUE="-154.0" />
<PARAMETER NAME="false easting" VALUE="0.0" />
<PARAMETER NAME="false northing" VALUE="0.0" />

http://www.epsg.org/

Adding a New CRS
to WCS GIO
Decoder
Framework

<PARAMETER NAME="latitude of origin" VALUE="50.0"/>
<PARAMETER NAME="standard parallel 1" VALUE="55.0" />
<PARAMETER NAME="standard parallel 2" VALUE="65.0" />
</PROJECTION>

</PROJCS>

</SREF>

Save the file, rebuild your war file (using the ant command in
<APOLLO_HOME>/webapps/erdas-apollo) and redeploy your war file.
An alternative is to keep the file out of the web app, but update the
CLASSPATH variable so that it contains the path to the file. The WMS,
WEFS, WCS will now have the necessary information to process
requests using the custom SRS. Below is an example of a WMS
GetMap request using the new SRS.

Notice that the SRS request parameter uses the assigned <PROJCS>
ID value and the BBOX parameter uses valid coordinates of the SRS.

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:40000
BBOX=100000,22000,200000,122000
LAYERS=grid

STYLES=currentsrs

FORMAT=image/png

BGCOLOR=0xFFFFFF

TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se xml

v

If the usersref.xml is to be modified then used outside of a web app
(ERDAS APOLLO Style Editor, command-line tool), it should be
put in a directory having the structure
“com/ionicsoft/sref/impl/resource”, the root of that structure being
added to the CLASSPATH.

ERDAS APOLLO Platform is currently composed of different
components that use their own projection engines to support different
spatial reference systems. It uses an OGC standard XML file-based
projection engine and the WCS GIO decoder plug-in, which provides
image decoding capability using the ERDAS IMAGINE raster engine, is
based on ERDAS IMAGINE (EPRJ) projection engine.

ERDAS IMAGINE
Projection Engine

As of APOLLO 10.0, the GIO decoders are not available on Linux
platforms.

Datasets that contain EPRJ based projection representation and
decoded via WCS GIO decoders are translated to ERDAS APOLLO
projection representation. The bridge between these engines is the
European Petroleum Survey Group (EPSG) code, which is the defacto
standard for identifying a CRS. Using EPSG code has the advantage
because they describe CRS unambiguously and let you define your
own by extensions.

The difference between the engines come into play in the following
cases:

* Adding EPSG Code: The system doesn't come preconfigured with
a valid EPSG code that you can use.

* Defining a New CRS: You have a coordinate system with all its
parameters that is not defined in EPSG, and you want to extend the
system to recognize this new coordinate system.

EPRJ is a very mature projection engine that supports quite a number
of CRSs. EPSG support was recently added to it using a translation
library that converts EPSG codes to their equivalent EPRJ CRS
definitions and vice-versa. This translation from EPRJ to EPSG is used
whenever any data or metadata is requested by WCS GIO decoders for
all the raster formats they support in ERDAS APOLLO.

ERDAS APOLLO users who want to extend the system should get
familiarized with the following ERDAS IMAGINE projection
configuration files:

* mapprojection.dat

* epsg.plb

* spheroid.tab

e units.dat

+ sptable.tab

All of these files are located in this directory:
<APOLLO_HOME>\native\raster\etc\projections

v

For an explanation of these files, see ERDAS IMAGINE
Projection System Configuration.

Administrators need to especially understand the epsg.plb file. Itis used
as the translation table from EPSG to EPRJ.

Projection Entry File Details

The actual projection entry from the epsg.plb file looks like this:

"NAD83 / Wisconsin Transverse Mercator (3070)" {
INTERNAL 9 "GRS 1980" "NAD83" 0
2:9.9960000000000004E-001 4:-
1.5707963267948966E+000
5:0.0000000000000000E+000
6:5.2000000000000000E+005
7:-4.4800000000000000E+006 "meters"

}

The following diagram shows the breakdown of the projection entry:

Figure 7: Projection Entry Diagram

5
il |
|Z| MNADES [Wiscohsin Trarlsverse Mertlamr (2070

IMTERMAL E| "GRS 1980" [["MADES" E 7

2:9.9960000000000004E-001 4:-1.57V07V963 267 948366E+ 000
5:0.0000000000000000E+000

£:5.2000000000000000E4+005

7 -4 4B00000000000000E4+006

5%}

"meters"

Table 3: Projection Entry Translation Table

Name Description

1 Projection Name The name of the projection as it will
be displayed in the metadata
(including quotes).

2 EPSG Code The EPSG code that matches the
EPRJ CRJ

3 Type Type of projection (INTERNAL /
EXTERNAL).

4 Internal Projection Number This projection number should be an
index into the mapprojections.dat
file.

5 Spheroid Your spheroid name (from
spheroid.tab) goes here (including
quotes).

6 Datum Your datum name (again from
spheroid.tab) goes here (including
quotes).

7 Zone number This is applicable only to the UTM
and State Plane projections and is
specified in sptable.tab. For
everything else, this should be zero.

8 Projection Specific Parameters The number of parameters varies
with the projection and should match
with the number of parameters in
mapprojections.dat for that particular
projection.

9 Units This should be one of the entries in
units.dat (including quotes).

Please note the following:

» The projection specific parameters (#8 in the above table) have
varying degrees of tolerance when EPRJ compares the values to
find the right projection. You must provide enough digits of precision
after the decimal point to have a low tolerance.

* For spheroids:

- The major axis, minor axis, and radius parameters have a
tolerance of 1.0e-05.

Adding EPSG Code

- The remaining parameters have a tolerance of 1.0e-09.
* For all datum parameters, the tolerance is 1.0e-09.

+ Forall EXTERNAL projections and INTERNAL projections (#3 and
#4 in the above table) greater than 3:

- Any angular value has a tolerance of 1.0e-12.
- Any linear distance has a tolerance of 1.0e-04.
- Any scale factor has a tolerance of 1.0e-10.

- Any integer value like NADCODE, StatePlane zone, and UTM
zone for instance, the tolerance is 0.1.

* When looking at parameters that represent origin, keep in mind that
EPRJ's internal angular representation is expressed in radians, not
decimal degrees.

ERDAS APOLLO Platform defines coordinate reference systems in a
series of XML files. By default, ERDAS APOLLO ships with a significant
number of coordinate reference systems including most of the non-
deprecated EPSG codes. However, it allows you to define additional
coordinate reference systems. The structure and content of XML files
have been extensively documented in the SRS Configuration
Parameters chapter.

The CRS to add exists in both ERDAS APOLLO Platform and EPRJ,
but not in an EPSG-to- EPRJ translation module. This might be
because only a subset of EPRJ is present in the ERDAS IMAGINE
EPSG translation library.

The steps for adding EPSG code support are:

Open the epsg.plb file using any text editor.

. Add the EPSG code you want supported as shown in Projection Entry

File Details above.

Save the file and restart the server.

You can now crawl data with this new projection.

Defining a New CRS

NOTE: The dataset might fail to register even after setting the correct
EPSG translation because the projection parameters inside the dataset
don't exactly match the tolerances of comparison for any one
parameter. In that case, please follow the steps below for Defining a
New CRS without Step 3."Add the CRS/projection information to
ERDAS APOLLO Projection Engine".

Defining a new CRS from scratch is more complicated. The
administrator should have a good understanding of the following:

* How to define a CRS and its parameters.

e Future additions to the EPSG dataset, user-defined codes should
be above the EPSG integer code limit of 32,767).

* How to add CRS entries to ERDAS APOLLO Platform system.

For more information, please read carefully the information in SRS
Configuration Parameters. Defining a new CRS requires you to know all
the parameters that define a CRS and make changes to the ERDAS
APOLLO projection engine.

If you are changing any of the existing .xml files, it is strongly
suggested that you first back up the original files and keep them in
a safe place.

To add a new CRS to the ERDAS APOLLO Projection Engine, follow
these steps:

Stop the JBoss application server.

Pick a user-defined EPSG code to use (should be > 32,767) if the CRS

doesn't have any EPSG code.

. Add the CRS/projection information to the ERDAS APOLLO projection

engine, as follows:

a. Create an XML file to include the new user-defined CRS per the
instructions listed in SRS Configuration Parameters and save it as
usersref.xml.

b. Copy the XML file to:
$JBOSS_HOME!\server\default\deploy\erdas-apollo.ear\lib\
cots-srs-1.2.jar\com\ionicsoft\sreflimpl\resource

c. Create the folders if they do not already exist. An example of
usersref.xml is:

<?xml version="1.0" encoding="utf-8" 72>
<SREF>

Filtering in a
GetMap

<PROJCS ID="26767" NAME="NAD27 / Georgia West">
<UNIT ID="9003" />
<GEOCS ID="4267" />
<PROJECTION NAME="Transverse Mercator">
<PARAMETER NAME="Central_meridian" VALUE="-
84.1666666666666"/>
<PARAMETER NAME="false easting"
VALUE="500000"/>
<PARAMETER NAME="false northing"
VALUE="0.0"/>
<PARAMETER NAME="latitude of origin"
VALUE="29.999999999999996" />
<PARAMETER NAME="scale factor"
VALUE="0.9999"/>
</PROJECTION>
</PROJCS>
</SREF>

Restart the JBoss application server.
Create an aggregate with the new EPSG code defined as its CRS.

Start a crawler job with this aggregate as the root.

NOTE: All new datasets found by this crawler should now have this new
EPSG code as their CRS. If cataloging fails, make sure that the above
steps are followed correctly and review the changes you made to
determine whether you specified all the parameters that are needed.

WV

If the GIO decoders are the ones configured for this file extension
(in the decoder.txt file), then this solution assumes that they can
recognize the image as referenced but cannot create an EPSG
code. If not recognized as a referenced image by GIO, please
change the decoder to the GDAL and try again.

Filtering functionality is currently supported in the Web Feature Service
(See The Web Feature Service (WFS)). Additional functionnality has
been added by ERDAS to allow the use of power filtering to define what
data will be extracted in a request in the context of WMS requests.
ERDAS servlets that publish vector data support WMS GetMap and
WMS GetFeaturelnfo requests with an additional "FILTER=<value>"
parameter, where <value> is the XML syntax for the OGC Filter
Encoding 1.0.0 specification. The exact set of Filter operators and
functions available is described in the OGC Filter Encoding 1.0.0
specification. The subset of the specification supported by a given
provider is published in its WFS capabilities document. By extension, a
WMS GetMap or GetFeaturelnfo request built on that same service can
use those filters.

Example of Filter Operations Declared in the WFS Capabilities

<Filter Capabilities xmlns="http://www.opengis.net/ogc">
<Spatial Capabilities>
<BBOX/>
<Equals/>
<Disjoint/>
<Intersect/>
<Touches/>
<Crosses/>
<Within/>
<Contains/>
<Overlaps/>
<Beyond/>
</Spatial Capabilities>
<Scalar Capabilities>
<Logical Operators/>
<Comparison Operators>
<Simple Comparisons/>
<Like/>
<Between/>
<NullCheck/>
</Comparison Operators>
<Arithmetic Operators>
<Simple Arithmetic/>
<Functions>
<Function Names>
<Function Name nArgs="1">Upper</Function Name>
<Function Name nArgs="1">Lower</Function Name>
<Function Name nArgs="3">Distance</Function Name>
<Function Name nArgs="1">Score</Function Name>
</Function Names>
</Functions>
</Arithmetic Operators>
</Scalar Capabilities>
</Filter Capabilities>

For example, using the "roads" feature type defined in the
BOSTON_SHAPE WFS, a WMS request for a set of road features
where the STREET_NAME contains "Avenue" could contain the
following filter definition:

<ogc:Filter>
<ogc:PropertyIsLike>
<ogc:PropertyName>STREET NAME</ogc:PropertyName>
<ogc:Literal>Avenue</ogc:Literal>
</ogc:PropertyIsLike>
</ogc:Filter>

Adding User
Functions

A WMS GetMap request using the filter would look like the example
below. Note that the column-like syntax used below is to make it
readable. The actual syntax to use in a GetMap request would be on a
single line, with '&' as a separator between parameters.

http://localhost:8080/erdas-apollo/vector/BOSTON SHAPE?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986

BBOX=233000.,890000. 235000.,893000.

LAYERS=roads

STYLES=default

FORMAT=1image/png

BGCOLOR=0xXFFFFFF

TRANSPARENT=TRUE

EXCEPTIONS=application/vnd.ogc.se xml
FILTER=<ogc:Filter><ogc:PropertylIsLike><ogc:PropertyName>STREET
_NAME</ogc:PropertyName>
<ogc:Literal>River</ogc:Literal></ogc:PropertyIsLike></ogc:Filt
er>

v

For simple filters, the WMS standardized "Dimension" mechanism
is recommended. (See OGC WMS 1.1.1 specification.)

For complex filters, as the FILTER=<value> mechanism is
proprietary to ERDAS servlets, it is recommended to use the SLD-
based behaviours, as described in the Portrayal Configuration
chapter.

You can extend the processing available in ERDAS WFS services by
adding functions called "User Functions". There are two types of
functions that can be added to a WFS:

* A Java class that will apply post-processing on the feature set
extracted from the data source

+ Atag that will publish a data-source procedure or function so that it
can be explicitly requested by the user. Generally, it is used for
Oracle-based providers in which the WFS calls an Oracle PL/SQL
function at the data extraction stage of the query

Adding a Java class
Function

The steps needed to add a Java class for post-processing are detailed
below. They are based on a sample function named SummaryFunction
which role is to truncate a text field when the length of the field is greater
than a given threshold.

The ERDAS APOLLO distribution providers a couple of Java
functions (package com.ionicsoft.wfs.function). The first one is
called GeneralizeFunction and is able to generalize a given
geometry (to reduce the number of coordinates). The second one
is called UpperFunction and is able to convert a String property in
uppercase.

Java functions are currently applicable only to provider types
exposing a ResultSet-type structure (Oracle, PostgreSQL,
ArcSDE). The AST-tree providers (such as the Shapefile provider)
do not support Java functions.

. Thefirst thing to do is to develop a Java class according to the following

guidelines:

If the function does not require parameters, provide the default
constructor

public SummaryFunction ()

{
m length=10;
}

If the function requires parameters, it is possible to provide
constructors of the form <constructor>(type1 P1, type2 P2....). An
example could be:

public AnotherFunction (String target, int length)

{
this.m target=target;
this.m length=length;
}

Create a set of "evaluate" methods. Each evaluate methods must
be of the form: ResultType evaluate (type1 P1, type2 P2...), where
ResultType can be Object, a simple type or a GeometryType. The
parameters types must be a simple type, a simple object type or a
geometry type. A simple type is a int, double ... and a simple object
type is Integer, Double, String, Date,

Adding a Data-source
Function

public String evaluate(String target)
{

return evaluate (target,m length);

}

public String evaluate(String target, int length)
{
if (target.length()>length)
{
return target.substring(0,length)+"...";

}

else

{

return target;

}

Once you have coded your function, you have to compile the class and
copy the generated class file in the classpath of the WFS service (i.e.
by adding the class in the <APOLLO_HOME>/webapps/erdas-
apollo/webapp/WEB-INF/classes directory) and rebuild the webapp
with the ant command in the <APOLLO_HOME>/webapps/erdas-
apollo.

The last step is to declare the function in the providers.fac file and the
end of the Configuration tag:

<CONFIGURATION>

<REGFUNC ID="Generalize"
JCLASS="com.ionicsoft.wfs.function.GeneralizeFunction" />

<REGFUNC ID="Summary"
JCLASS="com.ionicsoft.test.wfs.functions.SummaryFunction">

<PARAM NAME="length" VALUE="5" />

</REGFUNC>

</CONFIGURATION>

The Java functions can be used in GetFeature requests, but only in the
set of output PropertyName tags. They cannot be used in the Filter
clause, as they do apply to the feature set after it is extracted from the
data source. Moreover, they do not appear in the WFS capabilities
document.

A data-source function is the second way to add processing capabilities
to a WFS.

1.

2.

In case of an Oracle provider, the example consists in adding an Oracle
PL/SQL function to the WFS. The function has the same purpose as the
SummaryFunction Java class. Its PL/SQL equivalent can be:

create or replace function summarize (target varchar?2)
return varchar2 is
begin
if length(target)>5
then
return substr(target,0,5)||"'...";
else
return target;
end if;
end;

/

A "UserFunction" tag has to be added in the mapping file in order to
map the PL/SQL function with a WFS Function name (it will appear in
the WFS capabilities), and to describe the parameters and return type.
For the "summarize" procedure, the function is declared as taking a
String as single argument and returns a String. The mapping tags can
be:

<UserFunction name="Summarize" nameSQL="summarize">
<Parameter type="string" />
<Return type="string" />
</UserFunction>
<Mapping>
<SQL name="wfs:roads">

This tags add a "Summarize" function to the WFS functions list
available in the WFS capabilites:

<Functions>
<Function Names>
<Function Name nArgs="1">Upper</Function Name>
<Function Name nArgs="1">Lower</Function Name>
<Function Name nArgs="3">Distance</Function Name>
<Function Name nArgs="1">Score</Function Name>
<Function Name nArgs="1">Summarize</Function Name>
</Function Names>
</Functions>

Now you can perform the following WFS query:

<?xml version="1.0" encoding="UTF-8" 2>
<ogcwfs:GetFeature maxFeatures="20"

xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0" service="WFS" >
<ogcwfs:Query typeName="roads">
<ogc:PropertyName>STREETNAME
<ogc:Function name="Summarize">
<ogc:PropertyName>STREETNAME</ogc:PropertyName>

</ogc:Function>

</ogc:PropertyName>

</ogcwfs:Query>

</ogcwfs:GetFeature>

The resulting FeatureCollection contains truncated property values:

<wfs:STREETNAME>MARIET...</wfs:STREETNAME>

Instead of:

<wfs:STREETNAME>MARIETTA BLVD</wfs:STREETNAME>

You can also performs filtering using the user functions:

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WFs" >
<ogcwfs:Query typeName="roads">
<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:Function name="Summarize">
<ogc:PropertyName>STREETNAME</ogc: PropertyName>
</ogc:Function>
<ogc:Literal>MARIET...</ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

The WFS follows two rules in order to find User Functions:

+ It first searchs a Java function declared in REGFUNC tags, based
on the parameter count and names.

Setting Up a WFS
with GML3 Objects

* Then it searches for a data source function based on the name, in
UserFunction tags in the mapping file.

The Java functions do not appear in the WFS capabilities and
cannot be use in the <Filter> part of a GetFeature request. The
data source functions appear in the capabilities and can serve in a
Filter.

This section describes the general way of setting up a Web Feature
Server based on the GML 3.1.1 application schema. It automatically
exposes the data stored in Oracle as a WFS 1.1.0, and it opens the door
to defining schemas using one or more of the new GML3 types. ERDAS
APOLLO supports some of those types and this section explains how
to set up and query such a WFS for the new GML3 geometries,
Measurements and Units, and for Temporal operations.

This workflow assumes that the ERDAS APOLLO product has been
installed and that the services are accessible via the
http://localhost:8080 URL.

Steps to build an Oracle WFS on top of those sample GML3 data:

. The first task consists in initializing the Oracle data set using the set of

files provided in
<APOLLO HOME>/data/erdas-apollo/db/oracle/satellite. Run
the createoracle.sqgl SQL script to create the table and indexes.

Launch the ERDAS APOLLO Administration Console, i.e.
http://localhost:8080/apollo-admin, and login with the default
admin/apollo username and password.

In the left panel, click on http://localhost:8080/erdas-
apollo/vector to add this service type to the Vector Services tree.
Then click on erdas-apollo-demo in the Vector Services section.

In the bottom left pane, choose the "Add Service" button. In the screen

that comes up on the right enter the Service ID (e.g. GML3EXT) and

choose Oracle Provider.

. Inthe Service Info tab, specify "GML3 Satellite" in the Abstract and Title

fields. Set ./wfs_md.xml in the Service Metadata URL field. Click Accept
and answer OK to the question "Some attributes are wrong or missing.
Commit anyway?"

Insert Data into the
Provider

Curves, Surfaces, Rings

In the Connection Info tab, expand the Connect String property and fill
the sub-fields (most of the time, host, port, sid, user and password
suffice). Click the "Test Connection" link and answer OK to the "wrong
or missing attributes" question. If the connection to the database
succeeds, a green V sign appears at the bottom right of the console.

. A set of mapping and types files are needed for the WFS to be properly

configured. In the "Mapping File" field, type satellite.xml. In the
"Types Schema" field, type satellite.xsd . As those two files pre-
exist and are beside the providers.fac, they will be used. Click Accept
even though the "Mapping File" and "Types Schema" fields now have a
red border.

Click "GetCapabilities" to check that the service is properly initialized.
An XML document should appear. That document should declare a
single feature type: satellite.

Click Save to persist your changes into the actual configuration file.

As soon as the provider is up and running, you can use the WFS Loader
tool to insert data into the provider. More detail on that tool is given in
Tools and Viewers. The steps to insert the data using that tool are:

Copy the whole set of xml files found in
<APOLLO_HOME>/data/erdas-apollo/db/oracle/satellite into
the <APOLLO HOME>/tools/ows directory.

Execute runwfsloader ./gml3.xml for the script to execute. It will
produce a gm1310g0 file which contains the log of your operation. If that
file does not contain any "Exception" word and if the table contains 140
records, the inserts succeeded. If not, check the messages in the
gml131og0 file.

The service is now ready to serve the various GML3 objects. The
following sub-sections describe how to use them.

Using the previously created provider (GML3EXT), it is now possible to
use the GML application schema for GML3 geometries, and to query
them using spatial operators.

First, you can notice that the schema publishes, for the "satellite"
feature type, a "GEOMETRY" property with type
"gml:GeometryAssociationType". This type is a generic one, because
the inserted geometries are of various types. Executing a GetFeature
on the service or viewing the various <geometry>-request.xmil files
used to insert them shows the variety of geometry types inserted,
namely:

* ARC SEGMENT, having the GML3 structure: Curve/segments/Arc
(with 3 coordinates)

* MULTIPLEARCSEGMENT, having the GML3 structure:
Curve/segments/Arc (one or more, with 3 coordinates)

* POLYGON, having the GML3 structure:
Surface/patches/PolygonPatch/exterior(or interior)/LinearRing (one
or more)

* TRIANGLE, having the GML3 structure:
Surface/patches/Triangle/exterior/LinearRing (with 4 points)

« RECTANGLE, having the GML3 structure:
Surface/patches/Rectangle/exterior/LinearRing (with 5 points)

* RING, having the GML3 structure: Ring/curveMember (one or
more)/Curve/segments/Arc (with 3 coordinates)

+ CIRCLERING, having the GML3 structure:
Ring/curveMember/Curve/segments/Circle (with 3 coordinates)

If you wish to restrict the set of geometry types accepted by your feature
type, you first need to change its declared type from
gml:GeometryAssociationType to one, more explicit, among:
gml:CurveProperty Type, gml:SurfacePropertyType and
gml:RingPropertyType .

You can also use GML3 geometries in your GetFeature requests, like
in the example below:

<?xml version="1.0" encoding="UTF-8" 2>
<ogcwfs:GetFeature maxFeatures="200"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
xmlns:wfs="http://www.ionicsoft.com/wfs"
xmlns:gml="http://www.opengis.net/gml"
version="1.1.0"
service="WFS" >
<ogcwfs:Query typeName="wfs:satellite">
<ogc:Filter>
<ogc:Intersects>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<gml:Surface>
<gml:patches>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:pos>-165.0 -33.0</gml:pos>
<gml:pos>-127.0 -55.0</gml:pos>
<gml:pos>172.0 62.0</gml:pos>
<gml:pos>-165.0 -33.0</gml:pos>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
</gml:patches>
</gml:Surface>

Measurements, Units of
Measure

</ogc:Intersects>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

Using the same provider (GML3EXT) as in the previous example, we
can manage units of measures and measurements.

In the example, the "TEMPERATURE" property is of gml:MeasureType
type. It has a value and a "uom" attribute (Unit Of Measure). The unit
value is taken from one or more dictionaries of units. ERDAS APOLLO
WEFS comes with a set of predefined units, namely Angles in Degrees
(deg), Angles in Grads (grad), Angles in Radians (rad), Distance in
Kilometers (Km), in Meters (m), in Centimeter (cm), in Millimeter (mm)
and in Inches (in). If you want to define additional units, either new Basic
ones or others based on an existing one, you need to create an XML
document to hold that definition, and reference that document in your
mapping file.

Besides the WFS providers.fac available in the distribution, you will find
a units.xml file, which declares the Celsius (symbol "Cel") temperature
unit as a Base unit, and the Fahrenheit (symbol "Far") temperature unit
in relation with the Celsius one. The file is a valid dictionary in the sense
of the GML3 Units Dictionary specification (chapter 16 of OGC GML
3.1.0 Specification).

In order for your TEMPERATURE property type to be linked with those
unit definitions, you first need to add, in the satellite.xml mapping file, a
reference to the units XML document. It is done by adding the line:

<UnitDefinition>units.xml</UnitDefinition>

Then, you declare the association between your feature type, its
property and the default unit. It is done either by adding a "measure"
attribute to the <Element>, or by adding the line:

<UnitAssociation type="wfs:satellite" name="TEMPERATURE"
measure="Cel"/>

In the mapping file the association has to be declared AFTER the
unit and the property are known. We recommend the
<UnitAssociation> element to be set at the end of the mapping file.

Having done so, each time a request or an insert is done for that
property, the system will check the "uom" given in the query, and will
possibly convert the value to the default one if different.

For a GetFeature, the GML output will display the TEMPERATURE
property as:

Temporal Properties and
Operators

<wfs:TEMPERATURE uom="Cel">67.17497699418969</wfs:TEMPERATURE>

For an Insert transaction or a GetFeature using that property in a filter,
the uom given will be taken into account. We will build an example
request to obtain the count of features for which the Celsius
temperature is greater than 0. We can write it easily, and the response
will give 120 features. But as the internal unit is Celsius, it does not
illustrate unit conversion. So, we will change the request so that the
requested temperature is given as 32 degrees Fahrenheit, which
corresponds to 0 degree Celsius. The query is shown below, and you
can verify that the response is 120, like before.

<?xml version="1.0" encoding="UTF-8" ?>
<ogcwfs:GetFeature maxFeatures="1000"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.1.0" service="WFS"
resultType="hits" >
<ogcwfs:Query typeName="satellite">
<ogc:PropertyName>TEMPERATURE</ogc: PropertyName>
<ogc:Filter>
<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>TEMPERATURE</ogc:PropertyName>
<ogc:Literal uom="Far">32</ogc:Literal>
</ogc:PropertyIsGreaterThan>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

Using the same provider (GML3EXT) as in the previous example, we
can manage temporal properties and operators.

The example feature type contains several properties, intended to
illustrate both the gml:Timelnstant and the gml:TimePeriod types
defined in GML3. The LAUNCHDATE property is a Timelnstant, and
ACTIVITY is a TimePeriod. They have been created and populated
during the initialization phase. The LAUNCHDATE property does not
need any particular configuration except defining the proper property
type in the schema, i.e. gml:TimelnstantProperty Type.

For the ACTIVITY property, you also need to define it in the schema, as
gml:TimePeriodPropertyType. You also need to map the property with
a couple of columns in the database, one for the begin time position and
one for the end time position, both being a DATE column type. This is
done in the mapping file by configuring it like below:

<Element name="ACTIVITY" nameSQL="BEGINACTIVITY"
nameSQLCol2="ENDACTIVITY" />

To help you query your WFS, ERDAS APOLLO implemented the
operators as defined in the OGC Change Request document "Filter
Encoding Change Request CR 05-093 dated 12/10/2005": Before,
After, Begins, Ends, During, TEquals, TContains, TOverlaps, Meets,
OverlappedBy, MetBy, BegunBy, EndedBy.

WV

The CR 05-093 change request is a proposal, not a voted
specification. The set of operator names is subject to change
without prior notice. ERDAS supports those operators as part of
ERDAS APOLLO 2009, but is likely to align to changes and
deprecate those names.

The request below seaches for the satellites launched after end 2006.

<?xml version="1.0" encoding="UTF-8" 2>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
xmlns:iwfs="http://www.ionicsoft.com/wfs"
version="1.1.0"
service="WFS" >
<ogcwfs:Query typeName="iwfs:satellite">
<ogc:Filter>
<ogc:After>
<ogc:PropertyName>iwfs: LAUNCHDATE</ogc:PropertyName>
<gml:TimeInstant>
<gml:timePosition>2006-12-
31T00:00:00Z</gml:timePosition>
</gml:TimeInstant>
</ogc:After>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

The following example searches for satellites which activity will start on
8th November 2006 and end before 9th November 2007.

<?xml version="1.0" encoding="UTF-8" 72>
<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
xmlns:iwfs="http://www.ionicsoft.com/wfs"
version="1.1.0"
service="WFs" >
<ogcwfs:Query typeName="iwfs:satellite">
<ogc:Filter>
<ogc:Begins>
<ogc:PropertyName>iwfs:ACTIVITY</ogc:PropertyName>

<gml:TimePeriod>
<gml :beginPosition>2006-11-08T08:26:12%</gml:beginPosition>
<gml:endPosition>2007-11-09</gml:endPosition>
</gml:TimePeriod>
</ogc:Begins>
</ogc:Filter>
</ogcwfs:Query>
</ogcwfs:GetFeature>

Supported Constructs:
Timelnstant currently only supports the ISO 8601 frame, plus the
indeterminate positions "now" and "unknown". The calendar era name
is not used (the default Gregorian calendar is used).
The TimePeriod type contains 5 sub-properties: begin, beginPosition,
end, endPosition, timeLength. The following combinations of sub-
properties are valid:
* begin, end, timeLength - timeLength is ignored
* begin, endPosition, timeLength - timeLength is ignored
* begin, timeLength -

* beginPosition, end, timeLength - timeLength is ignored

* beginPostion, endPosition, timeLength - timeLength is ignored

* beginPosition, timeLength -

Portrayal Capabilities

Data Portrayal

Portrayal Concepts

Rules and Styles

Rules vs. Styles

Rules, the Portraying
Logic

The following information will be presented in this chapter

Portrayal is the use of rules to display and convert data such as GML,
coverages or custom data sources, JDBC result sets, COM objects, into
an image or formatted text document. For Web Application developers
using OGC interfaces, data is accessed through a WFS or WCS. The
ERDAS APOLLO Portrayal Engine transforms a collection of features
or coverages into the required output format. Output formats can be
vector format (SVG), image formats (GIF, JPEG, PNG, WBMP and,
GeoTIFF) or even textual formats (text, HTML, XML and, PDF). The
ERDAS APOLLO Portrayal Engine uses server-side rules to portray
information. These rules can be expressed in several languages,
Property, SLD and Java.

The current release of ERDAS APOLLO includes the ERDAS APOLLO
Style Editor tool. ERDAS APOLLO Style Editor provides the ability to
style data using ERDAS pre-defined rules. ERDAS APOLLO Style
Editor can be used to portray data using these pre-defined styles and
rules or using custom designed ones. Custom rules can be written
using the Portrayal API.

Portrayal rules and styles are two distinct concepts. Each entity
provides a different level of service but both are needed to portray data.
Rules are pieces of program code that provide a specific way to portray
data using a classification scheme, i.e., classes representing a numeric
attribute. Styles are text files that contain parameters defining how to
portray a dataset. For example, a Style will define which field the
ERDAS APOLLO Portrayal Engine will classify and what fill color and
stroke width to use.

Rules define the behavior to be used when portraying any kind of
compatible feature or coverage collection. They are written once and
used as many times as requested on as many different data sets as
required.

Styles, Definition of the
Look and Feel

Creating Maps

ERDAS APOLLO Style
Editor

A rule resides in a Java class written using the ERDAS API and is
dedicated to render a defined kind of data, feature and coverage
collections. A rule may also use a property or SLD file which is called a
style. The Java code may be either generic to allow the rule to be used
with as many feature or coverage types as possible or written to portray
a specific feature or coverage collection in a more efficient way. The
ERDAS APOLLO product provides a set of generic rules to be used with
any kind of features. More specific rules may be written by using the
developer version of this product, ERDAS APOLLO Solution Toolkit™.
Developing new portrayal rules requires advanced Java knowledge.

The provided rules have been extensively tested and optimized to
provide open and powerful portraying of any feature collection. Rules
also support advanced logic such as generalization, classification, and
new feature creation to render an updated feature collection.

Styles are collections of parameters that are used by a rule to render a
specific set of data in a predefined way. They are different for each set
of data and are only used by the specified data set.

A style defines set parameters to portray data using a selected rule and
the properties for use in labeling and classifying and, to select a
geometry to render, colors for fill, what stroke to use and what band to
display. Styles are tied to the data being styled as well as to the rule it
uses. Styles do not include any kind of logic and do not handle
performance issues. These issues are addressed during the rules
development process. The styling process only focuses on portraying
the data.

To simplify the process of building styles, ERDAS APOLLO provides a
tool called ERDAS APOLLO Style Editor which can define, preview and
deploy styles. See Output Formats and The ERDAS APOLLO Style
Editor for more information.

ERDAS APOLLO Style Editor is a Java-based GUI tool that can be
used to create, edit, preview and deploy styles. It contains a range of
styling functionality that allows the user to style data quickly and easily.
The ERDAS APOLLO Style Editor is tightly bound to the prebuilt style
templates.

Styles Templates To facilitate the styling of data, ERDAS APOLLO™ includes a set of

Description pre-built rules referred to as Style Templates. The style templates
provided with the ERDAS APOLLO Style Editor may fulfill most
rendering requirements, including classification and generalization.
However, more templates can be built using ERDAS APOLLO Solution
Toolkit™. Please contact ERDAS Support if more information about
building new templates is needed.

The style templates available in ERDAS APOLLO™ include the
following:

« Uniform: This template applies a simple style to every feature. The
stroke, fill and symbol can be configured for the entire feature
collection and any property of the feature can be used for labeling.

+ Known Symbol: This template applies a fast-to-render marker from
a fixed, predefined set to the centroid of each feature. A property of
the feature can be used for labeling.

+ Uniform Roads: This is a style template dedicated to the display
and portrayal of various types of roads. The ERDAS APOLLO Style
Editor allows custom configuration of the outline, fill color, and
center line to line or polyline geometry. Road can be labeled with
any property of the feature.

* Range Classification: This style is used to classify numeric data,
ranked data (to show a progression of values), or to represent
percentages.

» Discrete Classification: This style template should be used to
symbolize categorical data. Data values where the symbol for one
value is no more or less prominent than the symbols for another
value. It also handles lines and polygons stroke and fill color
variations as well as line/outline width.

* Range Road Classification: A style is attached to a range of
values of a property for the classification of non-discrete data.
Values must be numeric.

» Discrete Road Classification: This style template is used to
render roads with a discrete classification that affects outline and
centerline colors.

» HTML Report Fragment: This style template allows the rendering
of a feature collection into an HTML fragment. A sub-title can be
added that will appear in the output for this feature type.

http://www.erdas.com/Support

Creating Styles

Generalities

Languages

Property

» Variable Markers: This style template marks features with scaled
and optionally rotated symbols. The size and orientation are
determined using one of the properties of the feature.

» Patterner: This styling rule fills polygons with patterned
backgrounds.

* Feature Numberer: This styling rule marks the features that are the
nearest from the map center with sequential numbers.

* Symbol Roller: This styling rule renders linear geometries by
stamping a list of symbols along the curve in a cyclic manner.

+ Coverage Style: This is the only template applying to coverages. It
permits choosing the channels, the colormap and the contrast
operation.

Two styling languages are available in this version of the ERDAS
APOLLO™ Property and SLD. ERDAS APOLLO Solution Toolkit™
allows users to plug custom styling rules into the ERDAS APOLLO
Portrayal Engine and/or create their own styling mechanisms.

The "Property" language is a simple, key/value-based styling language
that defines both the rule to load in the ERDAS APOLLO Portrayal
Engine and the parameters to apply during the portrayal of the feature
collection.

Styles based on the Property language are typically created and
modified using ERDAS APOLLO Style Editor. Since the set of available
properties depends on the rule chosen, ERDAS APOLLO Style Editor™
offers a user-friendly, self-documenting way of setting the
corresponding values.

This language cannot be used to create styles that apply to coverages.
That is handled by the SLD language.

SLD

The OpenGIS Styled Layer Descriptor (SLD) is a powerful XML-based
styling language. While the complete SLD mechanism is intended for
WMS requests, the ERDAS APOLLO Portrayal Engine contained in this
product is able to style specific feature types and coverages using a
subset of the SLD tags.

For more information about SLD, see the Styled Layer Descriptor
document in the Implementation Specifications section of the
OpenGIS website. This document contains a complete description of
the SLD 1.0 language and the graphical results produced by the various
styling constructs.

Currently Supported SLD Tags

The following list is a reference for style developers. Depending on
whether the SLD document is provided in a GetMap request to a vector
data server (APOLLO vector servlet), a SLD Portray provider
addressing a WFS, a SLD Portray provider addressing a WCS (also
named a Coverage Portray service), or a Coverage Server, this list of
supported SLD tags varies. Moreover, the following list marks the tags
that are new to ERDAS APOLLO .

Notation:

"10.0": label used for tags new in ERDAS APOLLO 10.0
« "VP": for tags supported in the vector providers

* "PP": for tags supported in the SLD Portray provider on top of a
WFS

« "CP": for tags supported by the SLD Portray provider on top of a
WCS or in a Web Coverage Server

* "ignored": the element does not produce an error and thus, has no
apparent behavior.

Table 4: Supported SLD Tags

Tag Name Parent Element Supporting version/provider
NamedLayer StyledLayerDescriptor VP

UserLayer StyledLayerDescriptor PP

Name, Title, Abstract StyledLayerDescriptor ignored

http://www.opengeospatial.org/standards/sld

Table 4: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider
@version StyledLayerDescriptor defaults to "1.0.0"

Name NamedLayer VP

LayerFeatureConstraints NamedLayer ignored

NamedStyle NamedLayer VP

UserStyle NamedLayer VP

Name NamedStyle VP,PP

Name UserLayer PP,CP

RemoteOWS UserLayer PP,CP
LayerFeatureConstraints UserLayer PP

LayerCoverageConstraints UserLayer CP

UserStyle UserLayer PP,CP

Service RemoteOWS "WFS" or "WCS"
OnlineResource RemoteOWS PP - "&" must be written "&" (i.e. xml

encoding)

FeatureTypeConstraint LayerFeatureConstraints PP

CoverageConstraint LayerCoverageConstraints CP

FeatureTypeName FeatureTypeConstraint PP

Filter FeatureTypeConstraint PP

Extent FeatureTypeConstraint ignored

CoverageName CoverageConstraint CP

Extent CoverageConstraint CP (to be deprecated. Use
CoverageExtent instead)

CoverageExtent CoverageConstraint CP

TimePeriod Extent/CoverageExtent CP

RangeAxis Extent/CoverageExtent CP

Name UserStyle ignored: mapped with the STYLES
parameter of the GetMap request

Title, Abstract, IsDefault UserStyle ignored

FeatureTypeStyle UserStyle Rendered sequentially (last on top)

CoverageStyle UserStyle CP

Name, Title, Abstract

FeatureTypeStyle

ignored

Table 4: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider

FeatureTypeName FeatureTypeStyle Useless if the UserLayer has 1! feature
type

SemanticTypeldentifier FeatureTypeStyle ignored

Rule FeatureTypeStyle Rendered sequentially (last on top)

Rule CoverageStyle CP

Name Rule VP

Title, Abstract Rule ignored

LegendGraphic Rule ignored

Filter Rule 1.0: pargmeters are supported and can be
expressions

ElseFilter Rule VP,PP

MinScaleDenominator, Rule 1.0

MaxScaleDenominator

RasterSymbolizer Rule CP

*Symbolizer (except Raster) Rule VP,PP

Geometry *Symbolizer VP,PP - can be omitted if only one in the
feature type.

Stroke LineSymbolizer VP,PP

PropertyName Geometry VP,PP

CssParameter Stroke VP,PP

ParameterValueType CssParameter VP,PP

expression ParameterValueType VP,PP

Graphic GraphicFill 1.0

Fill PolygonSymbolizer VP,PP

Stroke PolygonSymbolizer VP,PP

GraphicFill Fill 1.0

CssParameter Fill VP,PP

Graphic PointSymbolizer VP,PP

ExternalGraphic Graphic 1.0

Mark Graphic VP,PP

Opacity Graphic CP

Size Graphic 1.0

Table 4: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider
Rotation Graphic 1.0
OnlineResource ExternalGraphic 1.0
Format ExternalGraphic 1.0
WellKnownName Mark VP,PP
Fill Mark VP,PP
Stroke Mark VP,PP
Label TextSymbolizer VP,PP
Font TextSymbolizer VP,PP
LabelPlacement TextSymbolizer VP,PP
Halo TextSymbolizer ignored
Fill TextSymbolizer VP,PP
CssParameter Font VP,PP

PointPlacement

LabelPlacement

at the centroid of the geometry

LinePlacement LabelPlacement ignored
AnchorPoint PointPlacement ignored
Displacement PointPlacement VP,PP
Rotation PointPlacement VP,PP
DisplacementX, Displacement VP,PP
DisplacementY
ChannelSelection RasterSymbolizer CP
ContrastEnhancement RasterSymbolizer CP
ColorMap RasterSymbolizer CP
ShadedRelief RasterSymbolizer CP
ReliefFactor ShadedRelief CP
RedChannel, Green, Blue, ChannelSelection CP
Gray
SourceChannelName RedChannel, Green, Blue, CP
Gray
Normalize ContrastEnhancement cP
Histogram ContrastEnhancement CP
ColorMapEntry ColorMap CP

Table 4: Supported SLD Tags (Continued)

Tag Name Parent Element Supporting version/provider
@color ColorMapEntry CP
@quantity ColorMapEntry CP

Notes:

* The NamedStyle is processed as a style name.

» The Filter in a Rule element is ignored if it applies to a feature
property that does not exist. It is important to ensure the proper
handling of syntax errors in property names.

+ Globally, the Title and Abstract tags have no effect, as they only
make sense when SLD content is published by a server.

* Default SLD version is "1.0.0".

* The LAYERS parameter must be mentioned in the GetMap request
to an ERDAS WMS even when the SLD tag is used. Among the
layers found in the SLD, only those found in the LAYERS parameter
are rendered. This restriction does not apply to the Portray Provider
or to the CPS.

* Unknown CssParameters do not produce an error message. A
CssParameter can be specified multiple times overriding the values
previously set.

* In Text Symbolizers, text anti-aliasing is enabled by default.
Parsing:

The SLD parsing is lenient. If the file is not a valid XML document, the
parser will detect an error. If it does not conform to the SLD DTD , the
parser will try to extract the most valuable information and continue
processing.

Example:Sample SLD Style

<StyledLayerDescriptor version="1.0.0"
xmlns:ogc="http://www.opengis.net/ogc" >
<NamedLayer>
<Name>ESA FIRE</Name>
<UserStyle>
<Name>MyStyle></Name>
<FeatureTypeStyle>
<FeatureTypeName>ESA FIRE</FeatureTypeName>
<Rule>
<PointSymbolizer>

<Geometry>
<ogc:PropertyName>Geometry</ogc:PropertyName>
</Geometry>
<Graphic>
<Mark>
<WellKnownName>square</WellKnownName>
<Fill>
<CssParameter name="fill">#ffff00</CssParameter>
<CssParameter name="fill-opacity">1.0</CssParameter>
</Fill>
<Stroke>
<CssParameter name="stroke">#0000ff</CssParameter>
<CssParameter name="stroke-width">2.0px</CssParameter>
</Stroke>
</Mark>
<Size>20.0</Size>
</Graphic>
</PointSymbolizer>
<TextSymbolizer>
<Geometry>
<ogc:PropertyName>Geometry</ogc:PropertyName>
</Geometry>
<Label>
<ogc:Add>
<ogc:PropertyName>LONG</ogc:PropertyName>
<ogc:Literal>10</ogc:Literal>
</ogc:Add>
</Label>

<CssParameter name="font-family">Arial</CssParameter>
<CssParameter name="font-size">12.0</CssParameter>

<LabelPlacement>
<PointPlacement>
<Displacement>
<DisplacementX>0</DisplacementX>
<DisplacementY>0</DisplacementY>
</Displacement>
</PointPlacement>
</LabelPlacement>
</TextSymbolizer>
</Rule>
</FeatureTypeStyle>
</UserStyle>
</NamedLayer>
</StyledLayerDescriptor>

Deploying Styles

Generalities The ERDAS APOLLO Portrayal Engine locates the styles to use for
portraying features or coverages in a directory hierarchy whose root is
defined in the providers. fac file

Example of Portrayal Root Directory Setting

<CONFIGURATION>

<STYLE DIR="C:/Erdas/ApolloServer/config/erdas-
apollo/rendering/" />
</CONFIGURATION>

For ease of manipulation, the contents of that directory hierarchy can
be packaged in a Grid Archive (GAR).

The styles generated by the ERDAS APOLLO Style Editor tool are
packaged in archives that should then be copied in the Style directory.
The default installation directory setting is
<APOLLO_HOME>/config/erdas-apollo/rendering for vector and
coverage styling.

If an appropriate style was not found in that directory hierarchy, the
ERDAS APOLLO Portrayal Engine will successively look for one in a
global library directory and then in each of the locations specified in the
servlet-engine CLASSPATH variable. This cascading behavior permits
the sharing of style libraries between multiple applications or providers.

Provider-Specific Styles

Deployment Structure

Styles

If WES/WMS provider-specific styles are defined, an additional level of
directories with names corresponding to the provider can be created
under the root of the hierarchy, for example,
<APOLLO_HOME>/config/erdas-apollo/rendering/atlanta_vector,
where ATLANTA_VECTOR is the provider name. If such a directory
exists, the corresponding provider will search there first for styles
corresponding to the retrieved features. This is the easiest way to
ensure that no feature type name conflict will arise between multiple
providers.

Note that in the current ERDAS APOLLO release, provider-specific
styles cannot be created for WCS/WMS.

In each style directory, styles are searched in a path structure
composed by successively appending the lowercased collection
keyword, the feature type or coverage offering name and then the style
name. The style filenames are composed of a target format, svc for
SVG and raster formats and atML for HTML, etc., and an extension
corresponding to the language used . prop for property styles and .s1d
for SLD fragments.

Symbols

Using the Map
Dressing Service

Grid

For example, a WMS request for the portrayal of the Bui 1dings feature
type/layer with the out1ine style in PNG format will either use the
collection/buildings/outline/SVG.prop oOr the
collection/buildings/outline/SVG.sld style.

A particular style, named "default", is used if no style is mentioned
in the request. The directory name for that style must be named
"defaultstyle" if it applies to features but not for coverages. For
example, the "default” style for rendering the "Buildings" layer in
PNG is collection/buildings/defaultstyle/SVG.prop .

When a style contains a reference to a symbol, the path searched is
composed by successively appending the symbo1 keyword, the symbol
library name and the symbol filename.

The ERDAS APOLLO Portrayal Engine libraries can contain symbols in
a variety of raster formats, GIF, PNG, etc. as well as SVG and
TrueType.

An example of a Property style referencing a TrueType font used as
symbol is included in the distribution, and can be invoked through the
ATLANTA_VECTOR WEFS provider, using the place_names layer with
the "truetype" style. The font set is symbol/lib/hanshand.ttf .

The Map Dressing Service is used for placing common map production
elements, i.e., north arrow, scale bar, grid, is included in the product and
appears as a provider in the WMS servlet. This service is preconfigured
at installation time and is automatically activated. The service can be
invoked using the following URL:

http://llocalhost:8080/erdas-
apollo/map/MAPDRESSING?service=WMS&version=1.1.1&reque
st=GetCapabilities

This request provides a set of available layers, predefined styles for
each layer, and additional "Dimensions" that allow for flexibility in the
output. Below is a description of the styles and dimensions for each
layer of the Map Dressing Service. For more detail on how to configure
this service, please refer to Provider Types.

The grid is a map element used for registering the positions of data to
uniform intervals. A grid is based on defined subdivision levels of the
page units, i.e., inches, centimeters.

Two styles are defined that determine the units in which the grid is
displayed and labeled.

* currentsrs - Displays the grid in the SRS unit of the request

* wgs84 - Displays the grid in WGS84 (EPSG:4326) that is the default
SRS defined by OGC standards.

Additional parameters can be included in a request to customize the
appearance of the grid line and the properties of the labels. By default,
the interval of the grid is automatically calculated using the units of the
SRS, to best fit the display window. However, the parameter "gridstep"
can be added to a WMS request to customize this measure.

* gridstep - Step of the grid, in the request SRS unit

By default, the grid is composed of a set of horizontal and vertical lines
crossing the entire map. This can be modified to display small crosses
or "crosshairs" at the intersection of those lines. This is done with the
optional parameter "gridcrosses" that is set to "false" by default.

* gridcrosses - Display small crosses instead of lines

The grid lines have a predefined stroke, black, and width, 0.5 pixels.
Using one or both of the "gridlinecolor" and "gridlinewidth" parameters

in a requests allows for custom values for those properties.

* gridlinecolor - Color of the grid using RGB values or a color
name i.e., blue

* gridlinewidth - Width of the grid in pixels

The grid labels are texts displayed on the grid lines. The properties of
those labels can be modified using additional parameters, label font
name, font style, font size, color, and a halo around the text.

e labelfontface - Font name to use. The default is "Helvetica"

* labelfontstyle - Style to use to display the label, normal, italic,
bold and bolditalic

e labelfontsize - The size of the text

* labelfontcolor - The stroke of the text

e labelhalo - Set to "true" for halo, "False" is the default

North Arrow

An additional property "fullGrid", can be used to display the labels
at each intersection of the grid. This parameter cannot be used in
a request. The property must be set in the portrayal style using
"fullGrid = true" or "fullGrid = false".

An example of a GetMap request with Grid parameters:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1
REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:4326
BBOX=10,10,90, 90
LAYERS=grid
STYLES=currentsrs
FORMAT=1image/png
BGCOLOR=0xXFFFFFF
TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se xml
DIM GRIDSTEP=4
DIM_GRIDLINECOLOR=blue
DIM_GRIDLINEWIDTH=5

DIM LABELHALO=FALSE

DIM LABELFONTFACE=Arial
DIM LABELFONTSTYLE=bold
DIM LABELFONTSIZE=14
DIM_LABLEFONTCOLOR=blaCk

A North Arrow is used to show map orientation. In ERDAS APOLLO™,
two north arrow styles are defined:

* round - Produces a simple black and grey arrow with an "N" on top
* arrow - Produces a blue and black wheel, with the 4 cardinal points.

The positional placement and size of the North Arrow can be specified
using:

* arrowxposition - Horizontal offset of the arrow, starting at bottom
left

* arrowyposition - Vertical offset of the arrow, starting at bottom left

* arrowsize - The size of the arrow, in pixels. By default, it has the
original image size

An example of a GetMap request with a North Arrow:

Scale Bar

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:4326

BBOX=10,10,90, 90

LAYERS=northarrow

STYLES=arrow

FORMAT=1image/png

BGCOLOR=0xFFFFFF

TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se xml
DIM ARROWXPOSITION=30

DIM ARROWYPOSITION=40
DIM_ARROWSIZE=50

Map scale is the relationship between the dimensions of a map and the
dimensions of the Earth. It is usually expressed as a ratio between a
distance on the map and a distance on the Earth, for example, 1:1000.
The scale ratio 1:1000 means that one map unit represents 1000 of the
same units on the Earth's surface. ERDAS APOLLO™ provides two
ways to represent scales:

* km - Displays the scalebar in kilometers or meters

* miles - Displays the scalebar in miles or yards

* The "look" parameter allows two ways to render the scale bar:

* look - Displays the scalebar either as a colored rectangle with the
scale value in it, value "simple" or as a checkerboard-like bar, value
"carto". A third value is "straight" for a 0-starting value, and constant

increment.

Four additional parameters provide further customization of the
scalebar:

* scalebackgroundcolor and scaleforegroundcolor - Set the
background and/or foreground colors of the bar. Values are given in
RGB, such as (255, 255, 127).

* scalexposition and scaleyposition - Set where the bar will
appear. It is expressed in pixels.

* scalewidth and scaleheight - Pixel sizing of the scalebar.

. scalelabelfontface, scalelabelfontsize and
scalelabelfontstyle - Sets the font, size and style of the
scalebar label.

Image Border

An example of a GetMap request with a Scale Bar:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:4326

BBOX=10,10,90, 90

LAYERS=scalebar

STYLES=km

FORMAT=image/png

BGCOLOR=0XFFFFFF

TRANSPARENT=TRUE
EXCEPTIONS=application/vnd.ogc.se xml
DIM LOOK=carto

DIM SCALEXPOSITION=200

DIM SCALEYPOSITION=10

DIM SCALEBACKGROUNDCOLOR=255,255,0
DIM SCALEFOREGROUNDCOLOR=255,0, 0

An image border is a line that surrounds the map image. ERDAS
APOLLO™ provides several options for deciding how to add a border
to the map.

Determine the width of the border by using the following parameters:
* thin -thinimage border that produces a one pixel dark blue border.

* thick - thick image border that produces a two pixel dark blue
border.

Change the color and width of the border with the following parameters:

* bordercolor - change the stroke of the border line. Values are in
RGB.

* borderwidth - user-defined thickness expressed in pixels.

An example of a GetMap request with an Image Border:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:4326

BBOX=10,10, 90, 90

LAYERS=border

STYLES=thick

FORMAT=image/png

Complete Dressing
Example

BGCOLOR=0xFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
DIM BORDERCOLOR=255,0,0

DIM BORDERWIDTH=4

An example of a GetMap request with the available Map Dressing
parameters:

http://localhost:8080/erdas-apollo/map/MAPDRESSING?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:4326

BBOX=10,10,90, 90

LAYERS=grid, northarrow, scalebar,border
STYLES=wgs84, round,miles, thin
FORMAT=image/png

BGCOLOR=0XFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
DIM GRIDSTEP=5

DIM_ARROWXPOSITION=50
DIM_ARROWYPOSITION:5O
DIM_SCALEXPOSITION:350
DIM_SCALEYPOSITION=35O
DIMﬁSCALEBACKGROUNDCOLOR=255,255,0
DIMﬁSCALEFOREGROUNDCOLOR=255,0,0
DIM_BORDERCOLOR=0,0,255
DIM_BORDERWIDTH:3

Figure 8: Map Dressing Output

I CEE EE N E N N L N E N R C N N R N L
5 85°

vy

Displaying
Statistics in a Map

Call

Output Information

Definitions

Displaying statistics in a map provides the ability to determine exactly
what types of geometry and how much geometry is portrayed in the
style/rule issued to the ERDAS APOLLO Portrayal Engine. Display
statistics can be used to analyze the service performance. Issue this
request to the portrayal engine to return statistical information on the
amount and complexity of the geometry requested.

Use the WMS GetMap request and append the "NEEDSTAT=TRUE"
option.

Statistics are only obtained when requesting a raster format. SVG and
GML2 output do not contain portrayal statistics. The response is left-
aligned text in the image returned:

Example:Response to NEEDSTAT=TRUE

A sample result:

Total Geometry:n

Total Group:n

Total Shape:n

Geometry Types:

Type Unknown(0) : n
Type Point(l) : n
Type Line(2) : n
Type Ring(3) : n
Type Polygon(4) : n
Type MultiPoint (5) : n
Type MultilLine (6) : n
Type MultiPolygon(7) : n
Total Point:n

Max Point:n

Mean Point:n

Total Color:n

World Size:f x £

Pixel Size:n x n
StandardScale: f

Geometry is defined in the feature type and includes point, line,
polygon, ring, multipoint, multiline, or multipolygon. See the "ERDAS
APOLLO Product Line Concepts Guide" or the OGC feature types
specification.

Portrayal Statistics

Output Values

A shape is a geometric property defined by the Java AWT interface. The
shape is described by a Pathlterator object, that can express the outline
of the shape as well as a rule for determining how the outline divides the
two-dimensional plane into interior and exterior points. Each shape
object provides callbacks to get the bounding box of the geometry,
determine whether points or rectangles lie partly or entirely within the
interior of the shape, and retrieve a Pathlterator object that describes
the trajectory path of the shape outline.

The ERDAS APOLLO Portrayal Engine uses the SVG concept of group
to apply the same set of common property values to a set of geometries.

Table 5: NeedStat Output Meaning

Line

Description

Total Geometry

The number of graphic geometries that are
portrayed

Total Group Number of SVG groups returned.

Total Shape The total number of Java AWT shapes that are
rendered

Geometry Types Total amounts are shown for different geometry
types, numbered 0 to 7

Total Point: The total number of points - including points in
geometry types other than point (line, polygons,etc)

Max Point The maximum number of points in a geometry

Mean Point The mean number of points for the geometries
returned

Total Color The total number of colors requested in the map
(based on an RGBA scale)

World Size The width and height of the map returned. Units are
expressed in a specified unit of measure based on
the coordinate transform system.

Pixel Size Size in pixels of the output image (width and
height).

StandardScale StandardScale is an SLD property, giving the

denominator of the map scale.**

**Refer to the SLD 1.0 specification for additional information on
standardscale.

Producing KML

KML is a file format used to display geographic data in an Earth
browser, such as Google Earth, Google Maps.

Outputing KML with ERDAS APOLLO is possible in various ways, for
different types of KML contents:

Without changing anything in your portrayal configuration, you can
request maps (with the GetMap request) in KML out of a vector service
(WFS), by providing the proper FORMAT parameter value:
FORMAT=application/vnd.google-earth.kml+xml (replace the "+" sign
with "%2B" if in a URL). You also need to be sure that the SRS used in
EPSG:4326. Sample request:

http://localhost:8080/erdas-

apollo/vector/ATLANTA_VECTOR?VERS ION=1.1.1&REQUEST=GetMap&SRS=E
PSG%3RA4326&

BBOX=-71.07503,42.264893, -
71.06302,42.273808&WIDTH=500&HEIGHT=500&
LAYERS=protectedareas, hydro, roads, highways, place names&STYLES=,
L&

FORMAT=application/vnd.google-earth.kml%$2Bxml&
BGCOLOR=0xffffff&TRANSPARENT=FALSE&EXCEPTIONS=application/vnd.o
gc.se xml

The ERDAS APOLLO Portrayal Engine, after building the graphic
objects that need to be rendered, produces a KML (XML) output instead
of a SVG-like structure. But as this stage of the process has no more
information about what entities (features) are to be rendered, the
produced KML is semantically poor and only holds graphic information.
This is a basic KML output that can be produced with minimal
configuration efforts and that can fulfill a set of use cases.

Some limitations:
* only the basic styling information is found in the KML document:
pre-defined point icon, line stroke, polygon stroke and fill, polygon

opacity.

* Some of the portrayal rules do not produce any output in KML:
Predefined Symbols for lines and polygons.

* Some rules produce reduced output: Entity Numbering rules for
lines and polygons only produce placemarks

+ The GetFeaturelnfo request type, with
INFO_FORMAT=application/vnd.google-earth.kml+xml, will also
produce a KML document that can be opened into your Earth
Browser. It will only contain the objects that we found by the
request.

Limitations

Fast 2D Rendering

Coverage Portrayal

* For smarter maps production in KML, you need to write a specific
Java rule that receives, as input, the feature set to render and the
set of portrayal parameters. You can use the ERDAS KML Helper
API to easily generate the KML elements that fit your needs.

* In a near future, you will no more need to write such a rule if you
requirements are not too specific. ERDAS is writing a set of such
rules to help you start up.

* For KML output out of the raster and coverage servlets, you will not
get more than images. They can be either referenced as a GetLMap
URL in the KML document, or embedded as a raster image in a
KMZ archive. For this last case, the format to use in the request is
application/vnd.google-earth.kmz.

* In the future, KML will also be written as a direct conversion of
vector data, i.e. as output of a GetFeature request.

The normal behavior of the portray engine is to build an SVG-like tree
of graphical elements before converting them into an image or a real
SVG file.

But ERDAS APOLLO also includes an alternative portrayal method,
which directly uses the Sun Java2D library. This method uses low-level
functions to draw points, lines, polygons and several other shapes. It is
several times faster that the normal portrayal method but it does not
apply in all cases. Some of the situations where it does not provide a
proper result are:

e If coordinate transform is needed;

* When using area patterns, line dashes and SVG symbols;

* When requesting SVG as output format.

In the current Release of ERDAS APOLLO , the styling capabilities are
not complete. The restrictions, which are likely to disappear in future

releases are:

* No provider-specific style is interpreted by the portray engine.

* The ERDAS APOLLO Style Editor does not produce the GAR to
allow deployment on the server. The hierarchy must be built
manually.

* The SLD language is the only one currently supported. Property
styles are not read.

Output Formats

Overview

Image Outputs

Graphic Interlaced
Format (GIF)

Joint Photographic
Experts Group (JPEG)

ERDAS APOLLO™r supports the output of data into various file formats
for further use or for data sharing purposes. The product allows output
in a variety of formats including images, text and HTML. In order to
output data, the output format must be included in the HTTP request for
a map, feature or coverage.

The ERDAS APOLLO product supports a variety of different image
outputs. All image outputs can be initiated from a GetMap request on
either a raster or vector WMS.

GIF is the most common format used on the Internet and is best for
simple graphics, i.e., line art and simple images with large blocks with
a few colors. GIF files are good for representing graphics, as opposed
to JPEG or other image format types, because the file size is small and
of a better quality. A GIF file can handle only 256 colors which makes it
inappropriate for photo images. GIFs work well for images like company
logos or screen shots. These images should be reduced to 16 colors, if
possible, and saved as a GIF.

Copy and paste the example provided below in the Service Tester for a
GetMap request in GIF format.

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000,902000
LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=image/gif

BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml

The Joint Photographic Experts Group (JPEG) is an organization that
sets standards for graphic file formats. JPEG is a compressed format,
with some loss of quality due to compression. JPEGs are best for
photos because the file size is small and there is no limit to the number
of colors used. Other file extensions used are .jpg, .jpeg, and .jpe.

ERDAS APOLLO supports a QUALITY parameter in the GetMap
request that sets the compression ratio between 0 and 100, 0 being the
maximum compression (lowest quality).

Keyhole Markup
Language (KML)

Copy and paste the example provided below in the Service Tester for a
GetMap request in JPEG format.

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000,902000
LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=1image/jpeg

BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
QUALITY=70

KML is a file format used to display geographic data in an Earth
browser, such as Google Earth, Google Maps, and Google Maps for
mobile. KML uses a tag-based structure with nested elements and
attributes and is based on the XML standard.

KMZ files are KML files, sometimes along with raster images, the whole
being compressed using ZIP compression technology.

ERDAS APOLLO™provides several ways to produce KML and KMZ
documents, depending on the nature of the data you want to output.

* Forraster data (the Coverage servlet), you can request KML to
obtain a light document containing the URL to a GetMap request
with a raster output format. You can also request KMZ, in which
case the zip contains a light KML document and an image which is
the output of a GetMap in PNG.

* For vector data sets (the WFS servlet), you can only request KML,
KMZ being dedicated to raster data sets. As soon as the portrayal
styles have been created in order to enable the WMS interfaces out
of your servlet, a GetMap request will convert the data into graphics,
like for the raster formats, and then convert it to KML. This means
that few data attributes will be available, due to the late stage of this
conversion.

To benefit from the whole power of the KML output, a specific Java
rule can be written, compiled and uploaded on the server. Such a
rule can be easily written thanks to a light Java API and a set of
helper classes - see ERDAS APOLLO Solution Tookit for more
detail on this API.

Scalable Vector Graphics
(SVG)

With ERDAS APOLLO™, the KML and KMZ formats are published in
the Capabilities document for the WMS interface, either as their format
names "KML" or "KMZ" or as their mime-types "application/vnd.google-
earth.kml+xml" or "application/vnd.google-earth.kmz", depending on
the version of the WMS specification.

SVG is an XML grammar used for modeling graphics. It differs from the
GIF and JPEG in that it uses graphic objects rather than individual
points. SVG is also a scalable format. This means that a graphic can be
rendered at differing resolutions.

ERDAS APOLLO™ supports three implementations of SVG.

* The default method of implementing SVG output is to issue a
format=image/svg+xml (or format = SVG in older versions of the
WMS spec) and the application will return an XML document that
can be read by any W3C compliant viewer.

This option may produce outputs not readable in an Adobe SVG
reader. The Adobe SVG Reader 3.0 is not completely compliant
with the W3C specification and does not support base64 encoded
content using the "data" protocol for SVG images. This basically
means that Adobe will not support a data URL for embedded SVG
image files, but will support embedded raster symbols.

If the output contains SVG embedded symbols or pattern fills, it
cannot be viewed in the 3.0 version of Adobe. Convert the
embedded symbols into pure raster format, GIF or PNG, since
Adobe will support embedded symbols in this format or use other
ERDAS implementations that support non-compliant SVG viewers.

* The work-around to non-compliant SVG viewers is SVG output
without embedded symbols. Simply edit the feature mapping file
and add the "DontEmbedSVG" option. The procedure is outlined
below:

Locate the feature mapping file. The default location is the providers.fac
file directory config/erdas-apollo/providers/vector. Open it in a text
editor.

Locate the "Option" section normally found before the beginning of the
<Mapping> elements.

. Add a new Option listing as follows:

<Option>
<DontEmbedSVG>true</DontEmbedSVG>
</Option>

4. Save the file and if necessary re-start the serviet.

This option will now use HTTP references for linked or embedded
symbols instead of the data URL. This means that all embedded
symbols will now appear as HTTP references that the client must
download to bring into the desired output.

Ensure that all embedded symbol files are downloaded and stored
in the same directory or subdirectory as the main SVG document.

The Java rule developer must insure that the rule created relies on
the Web servlet container that has this option in the providers.fac
file.

* Erdas has also created a new mime type format for SVG that
returns a zipped document that contains the main SVG document
and all embedded or linked files. This option supports local SVG
output. To use this option, use the parameter format=image/svg+zip
or format = SVG_ZIP in older versions of WMS and the application
will return a zipped file. Unzip the file and place the main SVG
document and it's corresponding files into the same directory. Any
W3C compliant SVG viewer can read the SVG file.

If the document contains embedded SVG symbols, the output will
not work in Adobe 3.0. Either convert the embedded symbols to
pure raster format or ensure that the SVG document contains
relative HTTP reference links. Links to embedded symbols using a
data URL will not work in Adobe.

Due to Adobe SVG Viewer limitations, text rendered with a Halo will not
display a complete image in Adobe SVG Viewer. Also, any style or rule
producing one of the SVG codes Adobe mentions as non-supported will
produce an unreadable file. See Adobe limitations at
http://lwww.adobe.com/svg/indepth/releasenotes.html.

GeoTIFF "GeoTIFF" refers to TIFF files which have geographic or cartographic
data embedded as tags within the TIFF file. The geographic data,
mainly the SRS and the extent in the header file, can be used to position
the image in the correct location and geometry on the screen of a
geographic information display.

http://www.adobe.com/svg/indepth/releasenotes.html

Portable Network
Graphic (PNG)

Erdas offers full support of the GeoTIFF image format. Several data
providers are committed to delivering imagery in GeoTIFF format
including SPOT Image Corp, Trifid (representing LandSat data), Space
Imaging, US Geological Survey, and the New York Department of
Transportation. In addition, the United Kingdom Military Survey has
announced it is testing the format for their products.

The following request shows how to return a GeoTIFF image from an
ERDAS WMS:

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000,902000
LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=image/tiff

BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml

PNG is a file format for image compression that, in time, is expected to
replace the Graphics Interchange Format (GIF) that is widely used on
the Internet. The PNG format was expressly developed to be patent-
free. A PNG file is compressed in "lossless" fashion meaning all image
information is restored when the file is decompressed during viewing.
PNG includes the following upgrades from the GIF format:

+ Degree of opacity (transparency)
* Interlacing

+ Gamma correction

* True color or GIF palettes

The following request will return output in PNG format:

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986

BBOX=225000,886000,237000, 902000

LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=1image/png

X-BMP

BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
QUALITY=30

ERDAS APOLLO™ supports PNG output in 8 or 24-bits. To do so, add
the "QUALITY" parameter to a request, with a value between 0 and 50
for 8-bits PNG and between 51 and 100 for 24-bits PNG.

Configure any provider to produce PNG of a specific quality.

* For a WMS provider, raster or proxy-WMS, add a PARAMBLOCK
tag named "quality" that holds a "PNG" parameter:

<PARAMBLOCK NAME="quality">
<PARAM NAME="PNG" VALUE="30" />
</PARAMBLOCK>

* For a WFS provider, the configuration is in the mapping file under
the <Option> tag. Create a <Generate8BitsPNG> tag containing
"true" or "false" as in the following example:

<Option>
<Generate8BitsPNG>true</Generate8BitsPNG>

</Option>

X-BMP is the default Windows BMP format. The following example is a
GetMap request that returns an X-BMP.

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000, 902000
LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=1image/x-bmp

BGCOLOR=0xFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml

WBMP

Text Outputs

Plain Text Output

A Wireless Bitmap (WBMP) is a graphic image format for sending Web
content to handheld wireless devices. The format is defined in the
Wireless Application Protocol (WAP), Wireless Application
Environment (WAE) Specification. For Web content that is directed to
handheld phones or personal digital assistants (PDA) that have Web
access, use the Wireless Markup Language (WML) to encode the page
and its text. An image converted from a GIF, TIFF, or other graphic
format can be included in the form of a WBMP file. The initial WAP WAE
specification supports only WBMP type 0 that is a compression image
in monochrome. As the bandwidth for wireless transmission increases,
richer images will be supported.

The following request returns a WBMP image format:

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetMap

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000, 902000
LAYERS=ATLANTA IMGIDX

STYLES=default
FORMAT=image/vnd.wap .wbmp
BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml

ERDAS APOLLO™ supports the following types of text output.

To produce plain text output from an ERDAS WMS or WFS, add the
INFO_FORMAT parameter to the GetFeaturelnfo request. This will
return either plain text or Comma Delimited Tabs (CSV). The content
depends on the connector type. The following is a GetFeaturelnfo
request that returns text output.

http://localhost:8080/erdas-apollo/map/ATLANTA IMGIDX?
VERSION=1.1.1

REQUEST=GetFeaturelInfo

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000, 902000
LAYERS=ATLANTA IMGIDX

STYLES=default

FORMAT=image/gif

BGCOLOR=0xXFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
QUERY LAYERS=ATLANTA IMGIDX

HTML

GeoRSS

INFO_FORMAT=text/plain
X=200
Y=220

The INFO_FORMAT parameter of the GetFeaturelnfo request will also
return output in HTML format. For vector data, the output will be a
simple but smart HTML page that contains a header, body and footer
text, a logo and title. The output will also contain a custom style sheet
(CSS) that allows flexible configuration.

HTML output is accessible from the ERDAS APOLLO Style Editor™.
ERDAS APOLLO Style Editor™ creates styles for HTML output that can
be used in the ERDAS APOLLO Portrayal Engine. Refer to the "ERDAS
APOLLO Style Editor User Guide" for additional information on how to
access this functionality.

Following is a GetFeaturelnfo request that returns HTML output.

http://localhost:8080/erdas-apollo/vector/ATLANTA VECTOR?
VERSION=1.1.1

REQUEST=GetFeatureInfo

WIDTH=400

HEIGHT=400

SRS=EPSG:26986
BBOX=225000,886000,237000,902000
LAYERS=futurelanduse

STYLES=default

FORMAT=image/gif

BGCOLOR=0XFFFFFF

TRANSPARENT=FALSE
EXCEPTIONS=application/vnd.ogc.se xml
QUERY LAYERS=futurelanduse
INFOiFORMAT=teXt/html

X=200

Y=220

RSS (Rich Site Summary) is an XML format for delivering regularly
changing web content. Many news-related sites, weblogs and other
online publishers syndicate their content as an RSS Feed to whoever
wants it.

GeoRSS is an emerging standard for encoding location as part of a
RSS feed (see http://www.georss.org for in-progress work on
GeoRSS).

ERDAS APOLLO™ supports GeoRSS as output of GetFeature
requests on vector data sets (the WFS servlet). It produces RSS 2.0
documents, with both GeoRSS Simple and GeoRSS GML outputs for
the geometries. The sample output below shows a GeoRSS output by
ERDAS APOLLO.

JSON

Data Outputs

Shapefiles

<?xml version='l.0' encoding='utf-8' ?>
<rss version="2.0" xmlns:georss="http://www.georss.org/georss">
<channel>
<title>LocalName</title>
<link>http://www.erdas.com</link>
<description>no description</description>
<item>
<title>CAMBRIDGE</title>
<georss:where>
<Point xmlns="http://www.opengis.net/gml"
srsName="EPSG:26986">
<pos>232226.47 901710.31</pos>
</Point>
</georss:where>
<georss:point>42.36522907219097 -
71.10877119738284</georss:point>
</item>
</channel>
</rss>

JSON, short for JavaScript Object Notation, is a lightweight computer
data interchange format. It is a text-based, human-readable format for
representing simple data structures and associative arrays (called
objects).

The official Internet media type for JSON is application/json. The JSON
filename extension is .json.

The JSON format is often used for serialization and transmitting
structured data over a network connection. Its main application is in
Ajax web application programming, where it serves as an alternative to
the XML format.

Shapefile is the most commonly used format for exchanging GIS data.
ERDAS APOLLO™ supports shapefile output in zip format. To obtain
shapefile output, append the "outputFormat=SHAPE" parameter to a
WFS GetFeature request.

Following is a GetFeature request that returns Shape output:

<?xml version="1.0" encoding="UTF-8" 72>

<ogcwfs:GetFeature maxFeatures="20"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ogcwfs="http://www.opengis.net/wfs"
version="1.0.0"
service="WEFS"
outputFormat="SHAPE" >

<ogcwfs:Query typeName="place names">

GML 2/3

GeoTIFF

JPEG2000, ECW, NITF,
DTED

</ogcwfs:Query>
</ogcwfs:GetFeature>

GML is an open, non-proprietary language used to create geo-spatial
objects for the purpose of data sharing. GML serves as a data transport
for geo-spatial objects as well as providing a means for describing geo-
spatial Web services. GML is constantly evolving and has quickly
become the standard geo-spatial information (Gl) format for all products
that are based on international Gl standards.

GML2 is the default output format of the ERDAS WFS 1.0.0 GetFeature
request but GML2 output can also be explicitly requested by appending
the "outputFormat=GML2" parameter to a WFS GetFeature request.

GML3 format is also supported by ERDAS WFS. Request a GML3
output by appending the "outputFormat=GML3" parameter onto a WFS
1.0.0 GetFeature request. Starting with ERDAS APOLLO , the OGC
WES 1.1.0 specification is supported. If a WFS 1.1.0 GetFeature
request is sent, the default output format is GML3. This is only possible
if the WFS provider is configured as a GML3 one. The feature types
schema must include the GML 3.1.1 feature.xsd schema and the
schema must validate against the GML 3.1.1 schemas. More
information on setting up a GML3-compliant WFS is given in Moving to
GML3.

Note that default outputFormat behavior can be overridden by defining
the <GMLOutputFollowModel>true</GMLOutputFollowModel> in the
<Option> section of the mapping file. Setting it to true will lead to output
being driven by the feature model used to set up the WFS.

For more information about GML, please refer to the "Concepts Guide".

When requesting coverages from a Web Coverage Service (WCS), the
coverages can be output in GeoTIFF format. This output image can
have one to n bands with 8-, 16- or 32-bit integer data (signed or
unsigned), or 16-, 32- or 64-bit floating point data. In other words, the
output can be any band combination and any data type.

Coverage data values do not represent pixel luminescence (red, green,
blue, cyan, magenta, yellow and black), but a physically measured
value (32-bit elevation float data, or 16-bit temperature short data).

A GeoTIFF cannot be viewed using standard image applications.

In a limited set of situations, ERDAS APOLLO allows data to be output
in several other formats, thanks to the GDAL library.

The conditions to be able to produce JPEG2000, ECW, NITF or DTED
output are:

ERDAS IMG

* The service mustbe an ERDAS WCS servlet. Itis recognized as the
path in the URL contains "coverage". Example:
http://localhost:8080/erdas-apollo/coverage/BOSTON_SC.

+ The type of the provider must be SimpleProvider,
MultiSimpleProvider, IndexProvider or HierarchicalProvider.

* The request must be a WCS GetCoverage.

* For some formats like ECW, the appropriate proprietary library has
to be linked with GDAL in order to be served. However they are not
available on all platforms. Please refer to Provider Types and
Table "GDAL-based Source Formats by Platform" for more details
on formats served via GDAL.

To make sure the service can produce a coverage in one of those
formats, run a DescribeCoverage command on that tile. At the bottom
of the output document, there is a XML section similar to the example
below:

<supportedFormats>
<formats>GeoTIFF</formats>
<formats>DTED</formats>
<formats>ECW</formats>
<formats>JPEG2000</formats>
<formats>NITF</formats>

</supportedFormats>

ERDAS IMAGINE is a complete suite of geoprocessing tools for
geoscience and earth resource applications for use in image
processing, GIS in remote sensing, and photogrammetry.

ERDAS IMG is the high performance raster data format that is used by
ERDAS IMAGINE. ERDAS APOLLO provides full support for reading
and writing ERDAS IMG format.

Coordinate Transformations

Introduction

Definition

SRS Concepts

Creating Custom
Spatial Reference
Systems

Creating a Custom SRS

This chapter gives a detailed explanation on how to use the Coordinate
Transformations on data using ERDAS servlets.

The ERDAS APOLLO product allows use of a variety of different
coordinate systems on the data. We provide the ability to not only
display data in a selected Spatial Reference System (SRS) but also
provides an advanced and sophisticated engine that allows
transformation of data from one SRS to another.

The Web product supports over 1,500 different SRS transformations.
These SRS coordinate transformations are based on the EPSG
classification adopted by international standards organizations such as
OGC and ISO. For more information about the EPSG, OGC or ISO,
consult the Concepts Guide under the Standards Section.

It may be required that the SRS employed be permitted to use other
data that is in different SRSes.

There are several different flavors of coordinate transform systems
(CTS) specializing in the preservation of the geographic shape, area,
distance or direction for a specific spatial extent on the globe.
Coordinates from different datasets will often have different reference
systems. In order to use data from different coordinate reference
systems, known point coordinates often must be transformed into the
corresponding coordinates in a different coordinate reference system.
The OGC Coordinate Transform Data Definition Specification defines
which coordinate systems, all based on EPSG, AUTO or BNGrid, are to
be used as well as the specific method to define transformations
between coordinate systems. This definition data can be transferred
between client and server software that uses OGC standard interfaces
such as Erdas servlets.

ERDAS APOLLO can be used to add a new or modify an existing
transformation.

Determine the SRS ID to be used. The ERDAS APOLLO , by default,
includes most of the EPSG transformations. Therefore, check the
epsg.org database to determine if the desired CTS is listed.

. If the transformation is included in the EPSG list, it is also probably
defined in one of the ERDAS SRS files. Locate the erdas-apollo.jar file
located in <APOLLO_HOME>/webapps/erdas-apollo/webapp/WEB-
INF/lib. Unzip the file and locate the xml files contained in the
com/ionicsoft/sref/impl/resource directory. The SRS files listed there:

+ sref.xml - This file contains a factory reference location. it is
strongly recommend that this file NOT be modified.

» factorysref.xml - This file is the ERDAS default SRS file. This is the
file that contains all of the information for the EPSG transformations
Erdas supports.

« ionicsref.xml - This file is the Erdas-specific SRS file. This is the file
that contains additional SRSs defined by ERDAS upon request of
customers.

« usersref.xml - This is the file that contains all of the custom SRSs. It
is not included in the distribution. So it needs to be created the first
time you add a custom definition.

Scan the usersref.xml file to determine if the desired SRS is included. If
not, or if a definition does not correspond exactly to the desired SRS,
adapt the definition. If the definition is in ionicsref.xml, copy the
definition into the usersref.xml file and adapt it if necessary. Changes
made in this matter will remain even if he software is reinstalled.

. Ifthere is no desirable SRS definition, open the usersref.xml file into a
XML or text editor and add information to define the new SRS. The
"Coordinate Transformation Services" appendix contains a listing of all
of the specific information needed. However, the entry of the SRS
information is fairly standard. A listing that specifies the following

elements needs to be created.

* ID and Name of projection

* The defined central meridian
* The false easting value

* The false northing value

* The latitude of origin value

» The standard parallel values

Usage and Syntax of the
SRS/CRS Parameter

Here is a sample SRS in the usersref.xml file. Simply copy and paste
previous instances of other coordinate systems and modify the values
to fit the custom SRS.

<?xml version="1.0" encoding="utf-8" ?>

<!-- the specific spatial reference system -->

<SREF>

<PROJCS ID="40000" NAME="NAD27 / Alaska">
<UNIT ID="9001" />
<GEOCS ID="4267" />
<PROJECTION NAME="Albers Conical">
<PARAMETER NAME="central meridian" VALUE="-154.0" />
<PARAMETER NAME="false easting" VALUE="0.0" />
<PARAMETER NAME="false northing" VALUE="0.0" />
<PARAMETER NAME="latitude of origin" VALUE="50.0" />
<PARAMETER NAME="standard parallel 1" VALUE="55.0" />
<PARAMETER NAME="standard parallel 2" VALUE="65.0" />
</PROJECTION>

</PROJCS>

Save the changes in the file and exit the editor. Rebuild your war file
(using the ant command: "ant erdas-apollo") and redeploy your war file.
The Web product will now contain the information necessary to process
requests using the new custom SRS.

At the time OGC defined Web Services specification, for Web Map
Services, it had to address the syntax for expressing coordinate
systems. OGC decided to rely on the EPSG (European Petroleum
Survey Group) definitions, and to adopt a simple syntax: code:value,
where code is one of "EPSG" and "AUTQO". "EPSG" is for codes defined
in the EPSG database, and "AUTO" is for Automatic projections, as
defined in the WMS 1.1.1 specification appendix. Examples of
commonly used values are:

+ WGSB84 geographic system: EPSG:4326
* UTM 32 North based on WGS84: EPSG:32632

* Automatic UTM, in meter, centered on (-100,45):
AUTO0:42003,9001,-100,45

Such expressions can be used in requests (HTTP-GET and HTP-
POST), can be found in Service Metadata (capabilities) documents and
in other XML outputs such as response to a DescribeFeatureType, or
in a GML output.

The next phase, for OGC, was to try and extend the expressions of
coordinate systems, as well as standardize the syntax. This led to
expressing coordinate systems as URNs (Universal Resource Names,
defined in RFC 2141 in 1997 by the Internet Engineering Task Force)
so that they could be registered in a standardization institute like IETF.

At IETF, the notation for CRSes defined by OGC must have the form:
urn:opengis:def:crs:authority:version:code . "authority" can be one of
"OGC" or "EPSG". "version" will generally be empty. "code" is the value
given by the authority. For the examples above, the corresponding URN
syntax is:

* WGS84 geographic system: urn:opengis:def.crs:0GC::84
* UTM 32 North based on WGS84: urn:opengis:def:crs:EPSG::32632

* Automatic UTM, in meter, centered on (-100,45):
urn:opengis:def:crs:0GC:42003:1:-100:45

In ERDAS APOLLO, the old code:value and the new URN syntaxes are
supported, as well in requests and responses as in the configuration
files.

For additional information, refer to the Appendix on SRS Configuration
Parameters.

Administration

Introduction

Types of Administration

Security

This chapter provides explanations on what can be administered as
well as guidelines on how to invoke the services to ensure that they are
properly configured.

Administration consists of interacting with the running Web services.
Administration of Web services is done to ensure that they are behaving
normally or to update their configurations.

Administering the services is a convenient way to monitor or change
their behavior without having to stop them. The users of those services
should not be impacted by administration tasks.

This section describes how to administer the product servlets as well as
the underlying data connectors to the servlets.

The current version of the product provides several different methods,
tools and tasks to administer the services.

Some of the methods are Web-enabled as "checks" to the running
services. These methods consist of parameters that can be given to the
servlets (see Checks below). This allows the services to perform
administration processing such as re-initialization, output version,
license, debug information, or removal of cache files.

Several tools provided must be started using the system's command
line. These tools perform automatic creation of indexes, environment or
connection checks.

Finally, some administration tasks can only be done by manually
modifying configuration files. They permit making more profound
changes in the servlets behavior, such as the compression threshold,
the metadata repository location or the styles library location.

If no specific configuration has been done at installation time, the Web-
enabled administration is accessible to anyone who has access to the
servlets. There are several ways to restrict this access. One can restrict
the permissions on the server or disable selected parameters on the
server.

For command-line or text-editor administration, restricting access to the
server disks suffices to secure these services.

Servlet-Engine
Level
Configuration
Parameters

Serviet-Engine Level
Security

When the tool allows uploading through the FTP protocol, the FTP
server needs to be configured to deny unauthorized access.

Most of the up-to-date servlet engines are configured in the same XML
file, named "web.xml". This file is located in the WEB-INF directory of
the current web application. If this web application is deployed as a web
archive (WAR) file, similar to the ERDAS servlets, the web.xml file is in
the WEB-INF directory in that war file.

For ERDAS servlets, configure the serviet URL pattern and startup
class and define the provider factory file (providers.fac) location in the
web.xml file. Other java-based properties can be defined in this file, but
these parameters are not specific to ERDAS servlets. Types of java-
based properties that can be configured in web.xml file include
http.proxyHost and http.proxyPort. These types of parameters are
added to the servlet configuration section of the web.xml file by adding
a "<init-param>...</init-param>" block in the <servlet> definition section.
(See the example below).

The providers.fac file default location is in the "resource" sub-directory
of the servlet main class package. For example, the "wfs" servlet's
startup class is named "com.ionicsoft.wfs.server WFSServer". This
means that its providers.fac default location is under
"com/ionicsoft/wfs/server/resource". However, in the distribution, this
location is overriden with the <APOLLO_HOME>/config/<servlet_type>
directory. This allows easy provider modifications (either manually or
with the Administration Console) without having to re-deploy the
webapp.

Other initialization parameters can be given to the servlets. These
parameters are not specific to ERDAS servlets but some of them could
depend on the level of implementation of Java by the servlet engine.

Several authentication mechanisms can be set up to request the client
application to authenticate when querying a J2EE servlet engine or
application server. Generally, the application servers allow three
authentication mechanisms, BASIC, DIGEST and PKI, as well as the
establishment of a secure channel. BASIC authentication on an SSL
channel is recommended if integrity or confidentiality is requested; if not
DIGEST authentication should be used on a classic HTTP connection.

The J2EE-based declarative security is based on the set up of an
authentication "Realm" containing the definition of users and groups.
Several options are possible depending on the type of application
server used:

» Description in an XML file

Servlet-Specific
Configuration
Parameters
(providers fac)

« JDBC connection to a database
* LDAP directory

An extensive description of the configuration steps needed for coarse-
grained security at the servlet engine level can be found in Advanced
Security.

Most of the configuration for ERDAS servlets is set up using the main
providers factory file, providers.fac.

The providers.fac file needed by the servlet for data source access as
well as global behavior tuning is taken from the
<APOLLO_HOME>/config/erdas-apollo/<servlet_type> directory.

Example: Default providers.fac Location for ERDAS Servlets

For the "map" servlet the class name is
"com.ionicsoft.wmtmap.servlet. GenericMapServlet". The default
providers.fac file is stored in the directory
<APOLLO_HOME>/config/erdas-apollo/providers/map.

For the "vector" servlet, the class name is
"com.ionicsoft.wfs.server WFSServer" and the default path is
<APOLLO_HOME>/config/providers/erdas-apollo/vector.

For the "coverage" servlet, the class name is
"com.ionicsoft.coverage.servlet.CoverageServlet" and the path is
<APOLLO_HOME>/config/providers/erdas-apollo/coverage.

If more than one servlet of each type is needed or if the configuration
directories have to be in another location, the providers.fac file can be
re-located by changing the "ConfigUrl" parameter in the WEB-
INF/web.xml file of the erdas-apollo webapp. If using a JBoss
application server, the web.xml file is located in
JBOSS_HOME/server/default/deploy/apollo-
server.ear/ROOT.war/WEB-INF. Its value is a URL to the file.

v

The URL types supported by HTTP and those supported by Erdas
servlets can both be used (See the Provider Configuration chapter,
"URL parameters behavior" explanation for details on Erdas-
specific protocols).

Example: Providers.fac File re-location example

<init-param>

Parameters in the
providers fac File

Framework
Configuration

<param-name>ConfigUrl</param-name>
<param-value>obj:///./mydir/providerstest.fac</param-value>
</init-param>

Other initialization parameters can be given to the servlets. They are
not specific to ERDAS servlets, but some of them could depend on the
level of implementation of Java by the servlet engine.

Example:Servilet parameter to proxy requests through a firewall

<init-param>
<param-name>http.proxyHost</param-name>
<param-value>myProxyHost.com</param-value>

</init-param>

<init-param>
<param-name>http.proxyPort</param-name>
<param-value>8090</param-value>

</init-param>

The providers.fac file is used by ERDAS servlets to determine the
behavior of and how to initiate the connection to the underlying data
sources. In this chapter, only the servlet behavior defined in the
"CONFIGURATION" part of the providers.fac file is explained. The data
connection part is covered in the "Data Configuration" part of this guide.

Framework Configuration is achieved in the second part of the
providers.fac file. Common behavior of the data providers can be
defined by configuring the elements listed below in the global
configuration section of the file, behind the <CONFIGURATION> tag.

There is generally only one instance of each of these parameters.

Table 6: Framework Configuration Elements

ELEMENTS

Descriptions and examples

CACHE

Sets the directory in which caching will be achieved and the caching method
applied. The "DIR" attribute holds the caching directory and the "USAGE"
parameter holds the method of caching (one of PERSERVLET, INTERVM -
the default, NONE, GLOBAL). The "CONTROLDIR" boolean parameter
controls the removal of expired directories under the cache directory. The
default is false. It is is set, it will prevent from having embedded cache

directories controlled by different servlets. See (1) below for more details.

<CACHE DIR="C:\Erdas\Apollo\config\map\cache"
USAGE="PERSERVLET" />

COMMANDS

Allows restricting the use of the "debug" provider. Attributes, whose values
are "true" and "false", are the names of the associated "cmd" values,
STATE, GETLIST, DEBUG (for ON, OFF, DUMP). The DISABLED attribute
allow to disabled all debug commands.

<COMMANDS STATE="FALSE" GETLIST="TRUE" DEBUG="FALSE" />

or

<COMMANDS DISABLED="true" />

DEFAULT

It defines some configuration variables. All attributes and all children
elements can define a variable which can be accessed by the provider.
Currently only the variables GDALPath, HEGPath, TMPPATH are
meaningful and are used to define the defaults which will appear in the
Administration Console when a new coverage provider is created

<DEFAULT>
<GDalPath>PathToGDal</GDalPath>
</DEFAULT>

Table 6: Framework Configuration Elements (Continued)

ELEMENTS Descriptions and examples

GARBAGE It has two attributes, LOOP and IDLE. It tells, in seconds, the looping time
of the garbage thread and the maximum idle time before garbage collecting
the providers. That means with default values that the garbage thread will
check every 10 minutes if each provider has been used the last 10 minutes
and will flush the ones that have been idle during this time. This parameter
is optional and the default values are 10 minutes, for both attributes. To
disable this feature, set the loop time to a negative value or 0.

<GARBAGE LOOP="600" IDLE="600" />

GzIP Shows the maximum size a transiting file can be without requiring
compression. The THRESHOLD attribute is expressed in bytes. By default,
the value is 0 meaning that all files should be compressed. The
ENGINECHUNK attribute, when set (default), allows the servlet engine to
do "transfer chunked encoding" by itself.

<GZIP THRESHOLD="2000000" />

LEGEND This parameter gives the location, file path or URL, to the Legend images to
be used in LegendURL tags.

<LEGEND DIR="/home/Erdas/legend"
TEMPLATE="{absolute}{id}/{name}/{style}.gif" />

LOGCONFIG Configuration parameters relating to service logging. It allows the export of
information to a repository of any type. See the "Logging" section below for
a complete description.

<LOGCONFIG TYPE="FILE"
FILENAME="D:/Erdas/logs/wfslog"
FILESIZE="1000000"
MAXFILE="10"
ENABLE="*" />

METADATA This parameter gives the location, file path or URL, to the Metadata files to
be used in MetadataURL tags.

<METADATA DIR="/home/Erdas/metadata"
TEMPLATE="{absolute}{id}/{name}.xml" />

Table 6: Framework Configuration Elements (Continued)

ELEMENTS Descriptions and examples

REGFUNC This parameter allows to declare a Java User Function for post-processing
on WFS feature sets.
<REGFUNC ID="Summary"
JCLASS="com.ionicsoft.test.wfs.functions.SummaryFunction">
<PARAM NAME="length" VALUE="5" />
</REGFUNC>

STYLE It has two attributes: DIR that indicates the root directory of the rendering
files and LIB that indicates the root directory of useful JavaScript functions.
No default value is defined.
<STYLE DIR="D:/Erdas/rendering/"

LIB="D:/Erdas/renderlib/" />

TEMPMANAGER | The directory where temporary files are stored. It defines the absolute path
of the directory containing the generated temporary files. Otherwise the jdk
temp directory is used.The variables expressed in the path are substituted,
especially {tmp} or {TMP} are defined as the absolute path of the java temp
directory (including the trailing separator). So you can use {tmp}local.
<TEMPMANAGER DIR="c:/temp" />

TRANSLATOR It has four attributes, HOST, PORT, PROTOCOL and FILE. The first two

(optional) parameters are used when the actual hostname and/or port of the
server does not match those contained in the URLs returned to the client by
the service. E.g., if the WFS builds a capabilities XML, the file will contain
URLs that must have valid hostnames. If omitted, the PORT used will be the
one defined in the request. The PROTOCOL parameter allows to mention
another protocol (such as https). The FILE parameter allows to add
something to the file part of the URL. By default, the current file part is used.
Note that if FILE is set, the provider name is always added to the new file
part.

<TRANSLATOR HOST="myserver.erdas.com" PORT="8080"/>

Table 6: Framework Configuration Elements (Continued)

ELEMENTS

Descriptions and examples

STORAGE

It defines defines the persistent storage ara to save uploaded file. The
absolute path is specified through the DIR attribute. The variables
expressed in the path are substituted, especially {tmp} or {TMP} are defined
as the absolute path of the java temp directory (including the trailing
separator). So you can use {tmp}local.

<STORAGE DIR="/home/area" />

1. The "INTERVM" caching method means that the cache directory can be shared by several processes or
virtual machines. This share is achieved by a file, named lock.txt, that insures locking. Caution: If this file
remains in the cache, the application may hang. The "PERSERVLET" option creates a cache that only per-
tains to the configured serviet. The "GLOBAL" option means that the cache is shared by all servlets. The
first configuration wins. "NONE" means that no caching is used for the servlet.

The WMS Servlet

The WFS Servlet

The WCS and IAS
Servlets

The WTS Servlet

Checks

Among the Framework Configuration parameters listed above, some of
them do not apply to the WMS servlet:

The parameter STYLE is useless as it is used only when applying
portrayal styles to features in the WFS.

All of the listed tags apply to this servlet.

The parameter LEGEND is currently not available.

The parameter STYLE is unused.

Ensure that the services are configured and running properly before
adapting them to the data. In this section, learn how to:

Check the product license
Check the product version
Check the log enablement
Enable the product's debug capabilities

Check the data connections to the servlet environment

Check the syntax of the providers.fac file

General Checks

Before configuration checks can take place, the administrator must
make sure the underlying data server is up and running and the servlet
engine is successfully started. HTTP requests containing set options
and parameters can then be sent either to the overall servlet or to an
individual provider.

Each type of data managed by an OGC-compliant Web Service gives
the servlet its name, "map" for raster and proxy-WMS, "vector" for
feature data and "coverage" or "ias" for imagery. This name allows the
building of the URL path of the servlet. e.g.
http://webservices.ionicsoft.com/erdas-apollo/vector. The next part of
the URL is the Provider name. Each provider addresses a feature-,
map- or coverage- source found in the data part of the providers.fac file.

Examples of Provider URLs

http://localhost:8080/erdas-apollo/map/ATLANTA IMGLIST
http://localhost:8080/erdas-apollo/coverage/ATLANTA SINGLE

v

Note that a particular pseudo-provider, named "debug", is
supported by the servlets. The debug provider allows global
management of the servlet independent of any provider. Example:
http://localhost:8080/erdas-apollo/map/debug .

The table below is a description of debug options and parameters and
the expected responses.

Table 7: Debug Request Parameters

cmd=gon Puts the whole servlet in debug mode. Gener-
ally followed by cmd=gdump commands. Only
applies if no <LOGCONFIG> element is
defined.

cmd=gdump Dumps the messages on the servlet. Must be
preceded by cmd=gon. Only applies if no
<LOGCONFIG> element is defined.

cmd=on Puts the provider leveling debug mode. Only
applies if no <LOGCONFIG> element is defined.

cmd=dump Dumps the message on the provider. Only applies if
no <LOGCONFIG> element is defined.

cmd=init Re-initializes the servlet. It must be done if the
providers.fac has been changed and needs to be
re-read.

cmd=flush Suppresses all the instances of all providers.

cmd=gon Puts the whole servlet in debug mode. Gener-
ally followed by cmd=gdump commands. Only
applies if no <LOGCONFIG> element is

defined.
cmd=cache Erases the cache content on the servlet side.
cmd=env Dumps the servlet environment variables.
cmd=version Provides information on ERDAS COTS version and

external specs used (deprecated).

cmd=getlist Displays the list of configured providers, along with
the debug flag - ON or OFF. ON if a cmd=on or gon
command was executed before.

cmd=license Provides information about ERDAS license validity
(host, date) and products

cmd=state Displays the state of the servlet and the state of
each provider

Note: Some or all of those debugging options can be deactivated in the
configuration. See the "COMMANDS" parameter in Servlet-Specific
Configuration Parameters (providers fac).

An example of the command to force reinitialization of all the providers
remove cached requests, and obtain version information is:

http://llocalhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=init,cache,version

An example of the command to display the log messages for a given
provider along with environment information.

http://llocalhost:8080/erdas-
apollo/vector/MYPROVIDER?request=debug&cmd=dump,env

The "Service Tester" tool, included in ERDAS APOLLO distributions
and documented in Tools and Viewers, shows how to send
HTTP-GET or HTTP-POST requests.

v

The providers.fac file is an XML file, with an associated — but not
mandatory — DTD, named factory.dtd. This DTD should be used
when editing and modifying the providers.fac file for input help and
content validation.

License Check

Connections

The ERDAS APOLLO Server needs valid ERDAS APOLLO licenses in
order to operate properly. To manage these licenses, a separate
ERDAS licensing application is used to configure either node-locked or
floating licenses. Please refer to the documentation installed with the
ERDAS-NET Licensing application.

JDBC connections

In previous chapters, connection information was provided for various
data sources. Some of the data sources are reached using a Java
connector and others use a JDBC connection. Each type of data source
reachable via a JDBC connection uses one of several different drivers.
Therefore, the connection string will vary accordingly. For example,
connecting to Oracle using a thin or an OCI driver will change the syntax
of the connection string.

Testing the JDBC connection to a data source can be done directly with
the servlet. However, for the most common environment, Oracle, the
JDBC Checkup Java class is provided for easier testing. Please refer to
the Tools & Viewers chapter for a complete description of this tool.

Xserver Connection

Logging

Logging Process

The servlets use the Java Awt package to produce images or maps.
Since the release of J2EE v1.4, there no longer is a need to physically
connect to a graphic server in order to build images and maps, except
for TerrainServer. This is done by activating the "headless" running
mode. For TerrainServer, ERDAS provides a small Java class, named
"AwtTest", that allows for a rapid check if an Xserver connection is
available for the servlet. Please refer to the Tools & Viewers chapter for
a complete description of this tool.

Logging is the writing of information about the processing that occurs in
a running program. Received requests, operations executed internally,
processing time and duration, produced output are all examples of
information commonly found in a "log file". In most programs, and in
particular, ERDAS servlets, the logging can be configured to decide
where to log, what level of information to include, from info to critical
error, and to what level of detail the logging should adhere. This section
describes logging in further detail.

For ERDAS servlets, the logging is enabled and configured in the
providers. fac file. Here is a configuration example for setting up
logging parameters in the providers.fac file.

<LOGCONFIG

TYPE="FILE"
FILENAME="D:/Erdas/logs/wfslog"
FILESIZE="1000000"
MEMORYSIZE="100"

MAXFILE="10"

ENABLE="*"

/>

This example shows that the logging will be enabled in the flat files
D:/Erdas/logs/wfslog0 to D:/Erdas/logs/wfslog9. The
maximum file size is set to 1,000,000 bytes. The maximum quantity of
files is 10. That means file wfslog0 will be created as first log file. As
soon as the file size reached the 1,000,000 bytes limit a second file is
created named wfslog1, and so forth until 10 files are created. Then the
logging begins again with the first file. Be careful choosing the value of
the log size because when using a high level of error logging, the files
could be filled very quickly.

Table 8: Available Parameters for the Log Configuration

Parameters Meaning

TYPE The type of the log manager. Possible values are FILE, OUT, MAIL, JDBC
and JMS. "FILE" allows recording to files, "OUT" writes in the standard
output and "MAIL" writes each message in an e-mail. For a servlet
configuration it is usually set to "FILE". The value "JDBC" writes the output
onto a SQL table and "JMS" sends the log to a JMS server. (JDBC and JMS
are unsupported)

ENABLE The provider to activate logging. In normal operation mode, this should be
set to "*".

ERRORLEVEL The levels of error to log. Predefined values are: 0 = Fatal, 1 = Minor, 2 =
Warning, 100 = Info, 10000 = Debug. The default is Info. Specific providers
are likely to define additional error levels.

MAXLEVEL The highest error level to enable. Except with the cmd=on/gon command,
this threshold will never be overtaken.

NAME The name given to the log manager, in case of compound logging (See next
section).

USE_DELAYED | A boolean parameter. The log manager uses an additional thread to
separate the process of writing to the log if set to "True". The default is false.

MEMORYSIZE The number of log entries kept in the provider memory. These entries can
be dumped via the servlet on,off,dump command. The default is "0".

TYPE="FILE":

Table 8: Available Parameters for the Log Configuration (Continued)

Parameters Meaning

FILENAME Defines the path of the file logs. Each log uses this name as a template and
increments it. Applies to TYPE="FILE"

FILESIZE The maximum size in bytes of each log file. Applies to TYPE="FILE"

MAXFILE The maximum number of log files. Applies to TYPE="FILE"

DELETEONSTA | A boolean parameter. If set to "True" the log files are deleted at each start

RT of the application. The default is "True". Applies to TYPE="FILE" and
"JDBC".

DELETEONCLO | A boolean parameter. If set to "True" the log files are deleted at each

SE application server shutdown. The default is "True". Applies to TYPE="FILE".

TYPE="JDBC":

CONNECTION The URL of the JDBC connection. Applies to TYPE="JDBC" and "JMS"

TABLE The JDBC table name. The default is LOG_TABLE. (Unsupported) Applies
to TYPE="JDBC"

MAXDAYS The maximum number of days to keep entries in the JDBC manager
(Unsupported) Applies to TYPE="JDBC"

FORMAT The format of the textual entry in the JDBC manager (Unsupported).
Possible values are TEXT and XML. Applies to TYPE="JDBC"

DELETEONSTA | Boolean parameter (default is true) If set the log files are deleted at each

RT start of the application. - Applies to TYPE="FILE" and "JDBC".
(Unsupported)

TYPE="MAIL":

ADDRESS The destination e-mail address. Applies to TYPE="MAIL"

HOST The SMTP server host name or IP address. Applies to TYPE="MAIL"

SENDER The e-mail address to mention in the "Sender" field of the e-mail. It must be
a valid e-mail. Applies to TYPE="MAIL"

SUBJECT The text to put as mail subject - Applies to TYPE="MAIL"

TYPE="JMS":

CONNECTION The name of the JMS connection in the jndi context. Applies to
TYPE="JMS"

TOPIC The JMS topic name (Unsupported). Applies to TYPE="JMS"

USER The JMS user name (Unsupported). Applies to TYPE="JMS"

PASSWORD The JMS user password (Unsupported). Applies to TYPE="JMS"

Table 8: Available Parameters for the Log Configuration (Continued)

Parameters Meaning

PERSISTENT A boolean parameter. If set, the sending JMS is persistent preventing
message loss. The default is "false". (Unsupported). Applies to
TYPE="JMS"

The following example explains the logging process. The sent HTTP
request is (column presentation):

http://localhost:8080/erdas-apollo/vector/LONDON SHAPE?
WMTVER=1.0.0

REQUEST=map

SRS=EPSG:27700
BBOX=530504.58,180173.63,531531.32,180795.39

WIDTH=540

HEIGHT=327

LAYERS=GENERAL LINE DETAIL LINE,VEGETATION LANDFORM LIMIT SUPP
STYLES=default,default

FORMAT=GIF

BGCOLOR=0xffffff

TRANSPARENT=FALSE

EXCEPTIONS=INIMAGE

USEBOX=TRUE

The generated log file shows us different xml tags.

The tag <LONDON_SHAPE> is the provider name where the property
TIME shows when the log entry was created and LEVEL the error level.
LEVEL possible values are 0: Fatal error , 1: Minor error , 2: Warning ,
1000: Info , 10000: Debug. In the example 0 means fatal error.

Tag <Processor> corresponds to the REQUEST parameter in the
HTTP request.

Tag <Parameters> lists each parameter sent through the HTTP
request.

Tag <Native_Query> shows the generated query that is used by the
server to retrieve the data from the data source.

Tag <Lx_y> shows the errors encountered by the server when trying to
process the request. x represents the level, y represents the line
number inside the level. This is incremented for each message
corresponding to this level. In the example, 2 kinds of errors. 4 minor
and 1 fatal were recorded. The 4 minor errors are due to the fact that
the rendering rules can not be found. The fatal error occured because
the parameter USEBOX is set to true and the data source does not
manage this type of spatial request.

Example:Log File Sample

<?xml version="1.0" encoding="utf-8" 72>
<LOG>
<LONDON_ SHAPE TIME="05/02/2003 16:20:03.024" LEVEL="0">
<Processor>map </Processor>
<Parameters>
WMTVER = 1.0.0
EXCEPTIONS = INIMAGE
LAYERS =
GENERAL LINE DETAIL LINE,VEGETATION LANDFORM LIMIT SUPP
FORMAT = GIF
HEIGHT = 327
TRANSPARENT = FALSE
BGCOLOR = Oxffffff
REQUEST = map
BBOX = 530504.58,180173.63,531531.32,180795.39
WIDTH = 540
SRS = EPSG:27700
STYLES = default,default
USEBOX = TRUE
</Parameters>
<Ll 2>Failed loading rule pre.SVG
java.lang.ClassNotFoundException: pre.SVG </Ll 2>
<Ll 3>Failed loading rule
general line detail line.defaultstyle.pre.SVG
java.lang.ClassNotFoundException:
general line detail line.defaultstyle.pre.SVG </L1 3>
<Ll 4>Failed loading rule
collection.general line detail line.defaultstyle.SVG
java.lang.ClassNotFoundException:
collection.general line detail line.defaultstyle.SVG
</L1_4>
<Native_Query>SELECT FEATURE ID,GEOMETRY COLUMN,GENERAL ID
FROM GENERAL LINE DETAIL LINE WHERE

((MDSYS.SDO RELATE (GENERAL LINE DETAIL LINE.GEOMETRY COLUMN,

MDSYS.SDO_GEOMETRY (2003, NULL, NULL,MDSYS.SDO_ELEM INFO ARRAY (1,3
/1)y

MDSYS.SDO_ORDINATE ARRAY (530504.56,180173.64,530504.56,180795.3
9,

531531.3,180795.39,531531.3,180173.64,530504.56,180173.64)),
'mask = ANYINTERACT querytype = WINDOW')='TRUE'))
</Native Query>
<Ll 6>java.sgl.SQLException:
Can't recover from previous error(s) at
zyh.sgl.ZYHSQL.W (Unknown Source)
at zyh.sqgl.ZYHConnection.a (Unknown Source)
at zyh.sqgl.ZYHStatement.executeQuery (Unknown Source)
at
com.ionicsoft.esri.jdbc.ShpStatement.executeQuery (Unknown
Source)

at
com.caucho.server.TcpConnection.run (TcpConnection.java:137)

Compound Logging

Debugging

at java.lang.Thread.run(Thread.java:536) </Ll1 6>
/LONDON_SHAPE>
</LOG>

Compound logging allows the logging messages directly to several
destinations simultaneously.

A compound log manager is declared using a hierarchy of
<LOGCONFIG> elements as in the example below. The "TYPE"
attribute of the outer LOGCONFIG tag will contain a semicolon
separated list of labels, each referring the NAME attribute of the
underlying LOGCONFIG tags.

<LOGCONFIG TYPE="namel;name2" >

<LOGCONFIG NAME="namel" TYPE="FILE" ... />
<LOGCONFIG NAME="name2" TYPE="MAIL" ... />
</LOGCONFIG>

Note that the ENABLE, ERRORLEVEL and MAXLEVEL parameters
can be defined on the outer container and will be applied to all
embedded managers. It general is best not to use them on the outer
manager and define what is needed on each manager.

Debugging is possible if the logging configuration does not direct
information to a file, a JDBC source or a JMS server. It can be
requested at two levels - at the servlet and at the provider levels. When
initializing a provider fails, debug at the servlet level. When initialization
succeeds but it does not provide proper results, debug at the provider
level.

To debug at servlet level, the debug mode has to be set on the "debug"
pseudo-provider, by using the "cmd=gon" option ("g" is for "global").
Then, run the command followed by a request to dump the debug
information. A sample sequence is:

Example:Sample Debug Sequence at the Servlet Level

http://localhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=gon
http://localhost:8080/erdas-
apollo/vector/myProvider?version=1.0.0&service=WFS&request=GetC
apabilities

http://localhost:8080/erdas-
apollo/vector/debug?request=debugé&cmd=gdump

To debug a single provider, the debug mode has to be set on the given
provider, using the value "on" instead of "gon" for the "cmd" parameter.
A sample sequence is:

Example:Sample Debug Sequence at the Provider Level

http://localhost:8080/erdas-
apollo/vector/myProvider?request=debugs&cmd=on
http://localhost:8080/erdas-
apollo/vector/myProvider?version=1.0.0&request=DescribeCoverage
&typename=myCoverageType

http://localhost:8080/erdas-
apollo/vector/myProvider?request=debug&cmd=dump

Note: Some or all of those debugging options can be deactivated in the
configuration. See the "COMMANDS" parameter in Servlet-Specific
Configuration Parameters (providers fac).

An example of command to force reinitialization of all the providers with
removal of cached requests and obtain version information is:

http://llocalhost:8080/erdas-
apollo/vector/debug?request=debug&cmd=gon

An example of command to display the log messages for a given
provider along with environment information is:

http://llocalhost:8080/erdas-
apollo/vector/MYPROVIDER?request=debug&cmd=dump,env

Performance Tuning

Introduction

After mastering the tasks within the ERDAS APOLLO documentation,
additionally configuration of the instance can be done to optimize
performance. This chapter offers performance tuning pointers that
address different aspects of the ERDAS APOLLO instance.

Getting the system up and running is the first step in building a
production environment. As soon as it is up, performance quickly
becomes the most important issue. lit is important to quickly remove
major inefficiencies and performance bottlenecks in order to ensure a
level of performance that will satisfy users.

In this chapter, most of the focus is on tuning the output of GetMap
requests, identifying at each step of map production which piece of the
system is involved, and how its behavior can be optimized.
Performance optimization process as it is applies to both vector files
and spatial databases is differentiated from their portrayal onto maps.
Also discussed will be performance issues related to the portrayal of
raster, or coverage data. At the end of the chapter, additionally tips will
be provided for tuning the system's environment.

The chapter roughly follows the steps of producing a map (as in the
picture below):

* The GetMap Request
+ Data Extraction

* Portrayal

» Raster Sources

¢« Environment

Figure 9: The GetMap stream with an Oracle source

Tuning the GetMap
Request

Getmap (http)

Provider

Queny result -ﬁm Map (GIF,JPG, PNG . image)

erviet Engine
Web Server

=4
1™
5
=
z
w0
T
>
14

S

Portrayal
Rules

Network
(infernebintranet)” "

Network

. The more map layers requested, the more information received. At

some scales, layers might hold an excessive level of detail justifying
either their exclusion or pruning. This raises the question of how to
make the layer choice seamless. ERDAS recommends configuring an
OpenGIS WMS Context document that holds the scale range
parameters. Even through there are several Context builder tools on the
market, it is recommended that either ERDAS APOLLO Style Editor or
ERDAS apollo-client be used to build WMS Contexts.

. The Coordinate Reference System (CRS) where the map is requested

can be changed in the client application. However requesting
coordinate transformations implies additional computing time that can
be long when maps are large or transformation algorithms are not
obvious. Therefore, it is recommended that map requests be in the
native CRS of the service for improved performance. The user won't be
aware of that information but the administrator who builds the initial
"WMS Contexts" should consider using the native CRS as much as
possible.

Some servers also support "VendorSpecific" parameters that allow for
optimized output. For example, when invoking an ERDAS servlet on
vector data with GetMap requests, setting the USEBOX parameter to
"FALSE" avoids the need to use the spatial index on the geometry, that
can be time consuming for small scale requests.

Tuning the Data
Extraction

Tune the RDBMS
configuration

. The output format requested and the weight of each band of the image

(8 bit, 24 bit), both have an impact on the response time. Requesting
24-bit non-compressed TIFF images will transport larger volumes than
an 8-bit 256 color GIF. JPEG has varying levels of compression. PNG
can be 8-bit or 24-bit, but Internet Explorer 6 does not support
transparency in 24-bit PNG. So, properly choosing the output format
with the "FORMAT" parameter and adequately adding the
VendorSpecific "QUALITY" parameter can accelerate the output. For
example, FORMAT=image/png&QUALITY=0 will produce an 8-bit PNG
that takes a bit more time to calculate as most native data are 24 or 32-
bit but the image is 3 times smaller.

Of course, 300x300 images will be output faster than 800x600 and
smaller screens do not take advantage of large images. Do not hesitate
to tune the client application's map view size.

If the Proxy WMS providers addressing third-party WMS's is
configured, requests to that provider will timeout if the underlying WMS
is not responding. It could lead to apparent overall client slowness, even
if only one layer is slow.

In this section, vector data extraction scenarios for data persisted as
both Shapefile and RDBMS will be considered. For raster, or coverage
data, see Tuning the Raster Data Sources. Tuning a database server
is both art and science. Do not hesitate to request the help of a good
database administrator.

Other tuning tasks are explained in the following sub-sections:

+ tuning the RDBMS configuration

+ tuning the database indexes

* tuning the native request

For Oracle and other RDBMS, some of the elements influencing
performance are:

* Global Setting - (DB_BLOCK_SIZE, DB_BLOCK_BUFFERS,
SHARED_POOL_SIZE, LOG_BUFFER, DB_WRITERS, ...).

+ JDBC Driver - (Erdas WFS accesses Oracle through JDBC Thin
and OCI drivers). OCI drivers are generally faster, but consider
installing the Oracle Client on the Servlet Engine host.

* Oracle Version - e.g. Spatial indexes are optimized in more recent
Oracle releases

* Using Materialized Views
* Oracle Partitioning
+ Spatial Indexing - Quad-Tree, R-Tree, GiST Tree (See next section)

. When setting up a provider, the connection string must be included in
the providers. fac file. This includes a URL-like expression with the
database hostname and port, the user, the database ID, etc.

For Oracle, the JDBC driver allows you to add the defaultRowPrefetch
parameter to obtain larger data sets. By default, only 10 rows are
fetched at a time. Setting this parameter to 1000 when most of the
requests are expected to output large volumes could improve the
response time significantly. Note that it only impacts performance if
there is network access between the servlet engine and the Oracle
server.

For PostgreSQL and Microsoft SQL Server 2008, the JDBC driver
allows you to add the fetchsize parameter if you want. If you do not add
it, ERDAS APOLLO fetches 1000 rows at a time. If you do add it, and
you set its value to a positive number, the number of rows that you
specify will be fetched. If you add the parameter and set its value to any
negative number, all of the rows will be fetched.

Each JDBC-type provider (Oracle, PostgreSQL) maintains a pool of
JDBC connections to the database. The default pool size is setto 10 DB
connections, and that pool is part of the ERDAS APOLLO product.
Depending on the number of simultaneous connections, that size can
be increased using the poolsize parameter. If running the servlets in an
Application Server, delegate JDBC pooling to the application server
pooling to take full advantage of its capabilities.

4. When running requests including spatial filters, significant performance
improvements occur if you take advantage of the Oracle prepared
statements mechanism. Indeed, this mechanism is managed by Oracle
to letits engine reuse the execution plan of a request for the subsequent
calls. By default in ERDAS APOLLO, the WFS requests are converted
into "normal" SQL statements, not prepared statements. There are two
ways to switch to the prepared statements syntax. The firstis to set the
GEOMTEXTSIZE parameter in your providers.fac to 1, instead of
the default 500 value. It will force the usage of prepared statements as
soon as a spatial filter is used in the request. The alternate solution is
an Oracle option, by setting the Oracle cursor_sharing parameter to
"force" in the relevant init.ora configuration. See http://www.quest-
pipelines.com/newsletter-v2/cursor_sharing.htm for more detail on that
option.

Tuning the Database
Indexes

1. If using WFS providers on top of Oracle 9i, 10g or 11g, check that the
indexes are properly defined and tuned:

* For non-spatial properties, those which are frequently used in
requests should be indexed to optimize searches.

» For Point geometric properties (SDO_GEOMETRY fields), Quad-
Tree indexes are the best, with appropriate SDO_LEVEL and
SDO_TILES parameters. Oracle provides a tool that analyses the
data and suggests the optimal parameters. Example: CREATE
INDEX ESA_FIRE_GEOM ON ESA_FIRE(GEOM) INDEXTYPE IS
MDSYS.SPATIAL_INDEX PARAMETERS('SDO_LEVEL=10").

* For other geometry types such as LineString, Polygons Oracle
recommends using R-Trees. They are easily created by avoiding
the SDO_TILES and SDO_LEVEL parameters in the index creation
query, for example: CREATE INDEX |_ANN_GEOM ON
ANNOTATION(ANN_GEOM) INDEXTYPE IS
MDSYS.SPATIAL_INDEX .

2. For Shapefiles providers, create an R-Tree index using ERDAS's
indexer tool (See Shapefile RTree Builder).

3. For PostgreSQL (or PostGIS) providers, three types of indexes can be
used: B-Tree, R-Tree, and GiST indexes.

Tuning the Native
Request

Note that frequent updates i.e., insert, delete, in the PostgreSQL
database end up causing PostgreSQL to return strange and
inconsistent results. Is is recommended that the "vacuum”
command be run on the database, to clean up the deleted tuples in
the tables and fix the inconsistent results. This should be done
following a successful backup.

For ArcSDE providers, use the native "ArcSDE grid" spatial indexing
system or rely on the underlying database indexing systems (SDO or R-
Tree for Oracle Spatial, ...).

A WMS GetMap request or a WFS GetFeature request will inevitably be
converted into a query in the native language of the RDBMS. For
Oracle, PostgreSQL and ArcSDE over Oracle or MS-SQL, the
underlying query is in SQL. There are several ways to optimize the
translation into native SQL query:

. As explained in the first section, tune the GetMap request to limit the

number of servers invoked and the number of layers requested. Each
layer means one or more SQL queries the gain is obvious.

By default, a GetMap request will query ALL the columns of the table
mapped with the WMS layer. When mapping the GML feature type
definition to the database model, all of the columns do no have to be
mapped. Only expose the properties which make real sense to the user.
In particular, if only output maps, not feature collections, and simple
styling, i.e., no classification, labelling, etc., are required, restrict
exposure to the geometric set of columns possibly one or two others
which are useful. This will considerably reduce the volume of data
output from the database.

MapGen tags can be used to restrict requested properties. Be careful
to keep all tags used in the portrayal styles, as well as the geometry.
See The Map Generation Transformer for more information on how to
use the MapGen tags.

. When a complex mapping is configured (one feature type mapped to

more than one table), the service will often run several SQL queries for
each request received. Performance becomes critical if the
configuration is not optimal and indexes are not adequately created.
See Feature Mapping for more information on complex mappings.
When possible ERDAS recommends mapping one feature type to one
table or view. Use the view mechanism if several tables are needed.

. The MapGen tags also permits applying additional filtering clauses, with
different expressions for each scale range using WHERE clauses.

6. By adding a GROUP BY clause to the native query, features can be
grouped into smaller sets using the MapGen tags.

Look at the servlet's log file, that contains the native SQL queries
sent to the database. Those queries can teach much about
performance.

7. ERDAS APOLLO 9.3 can switch from one DB table to another
depending on the scale factor given in the request. If several tables are
established, each having the same properties names but a different
content, the system calls the "lightest" table at the small scale first and
then progressively calls "heavier" tables at larger scales. See Scale
Dependent Table in the The Map Generation Transformer section.

8. Use prepared statements. Oracle is able to optimize the execution of
the requests by calculating an Execution Plan before each request. This
plan allows optimization using indexes, triggers, etc. However when
each request is a literal with parts of it varying from one request to
another, no optimization is possible. On the other hand, if the variant of
the request is given as a set of parameters, named bind variables, the
literal part is unchanged from one request to the other and optimization
is possible. To activate preparedStatement use in the GetMap
requests, set the minimum number of coordinates necessary to convert
the request into a SQL query with prepared statements in the WFS to
one (1). The parameter looks like: <PARAM NAME="geomtextsize"
VALUE="1"/> . Note that the default value for that parameter is 500.

Tuning Portrayal

1. When designing portrayal styles for optimized performance follow these
drawing guidelines: lines of width=1, single color instead of a pattern,
no dashed lines are among the most impacting one.

2. If rendering geometries as symbols, favor SVG symbols over rasters
like GIF and JPG. Consider converting raster symbols into SVG format.

3. Anti-clashing is the function that moves some objects to avoid overlay
with others. This function slows down the process and is unjustified in
most case. ERDAS recommends de-activating it.

4. Anti-aliasing provides smooth images but is also time consuming. It can
be disabled through the ERDAS APOLLO Style Editor style properties
panels.

Favor Fast 2D rendering (using Java 2D internal mechanism instead of
going through the SVG-like tree. It does not apply to all cases of
portrayal but for simple styling you can activate it by setting the property
"parameters.directRenderingEnabled" to "true" in the Property style file.
Other restrictions on using the Fast 2D rendering are described in
Chapter 9 "Portrayal Capabilities", Section 8 "Limitations" .

. At small scales, the level of detail in the rendering does not need to be

as high as at large scales. Adapting the portrayal style to use the scale
range will help. The GAF client can restrict the scale range for each
server or layer invoked. Geoviewer also does that by means of the
WMS Context definition that holds "scaleMin" and "scaleMax" tags. If
server-side branching to one style or another is required, a specific
Java rule using the Developer option of ERDAS APOLLO must be
written.

Portraying on the client side means that a large volume of raw data
(GML) is transported to the client application. Portraying on the server
offers much faster output even though there is less flexibility on the
client side. When adding a layer to the client, favor calling the service
as a WMS instead of a WFS.

If addressing the service as a WFS and portray locally on the client side
is still desired, reduced volume of raw data can be obtained by
requesting the "Serialized Feature Collection" output format. The
parameter value is "SERFC". It produces a binary stream that is
encoded and decoded faster and has a much smaller volume than
XML-encoded GML that still needs to be decoded on the client side.

NOTE: This is not yet adopted as an OGC specification and it is
supported only by ERDAS's Web Services and its clients (Web
Client, Style Editor).

. When the geometries are large, multi-geometries or containing many

points or lines, consider "generalizing" them, to lower the number of
vertices or edges before sending the GML data to the client. Today, the
generalization function can be explicitly called in a GetFeature request
but it means that the full geometry is transferred to the invoker before
being generalized. Therefore, it is best if a middleware application,
running on the same machine as the services, does the request. Also,
consider extending the portrayal rules to apply generalization when a
GetMap is executed.

An alternative is to apply the generalization mechanism and store the
generalized geometry as a new column in the table. Then, the MapGen
tags, will ensure this geometry is used in lieu of the original one, for
small scales.

10. SLD rules, while standard (OGC Specification), are more time-
consuming than Property styles. Keep SLD rules when sending with a
GetMap request but convert them into Property rules if they are
permanently stored on the server.

Tuning the Raster
Data Sources

1. Build a pyramidal provider that will address different mosaics
depending on the scale range. ERDAS APOLLO includes a tool that
takes an existing image or a set of tiled images and builds the mosaic
with varying precision for various scale ranges. See Typical Scenarios
and Assembling Services and Combining Data for instructions on
how to set up a Pyramid WMS.

2. Choose a format that is the fast to parse, tiff or bil.

3. Ifthe raster data behind a single provider are big, a gain in performance
can be realized by splitting them into tiles and having a IndexProvider
configured. This provider implies having a world file per tile, or that
information in the image header in case of GeoTIFF, and building the
index file, generally a GML file. See IndexProvider scenario for more
information on how to set up an IndexProvider.

Tuning Parameters ERDASAPOLLO Platform adds support for new formats by adding new
: : decoders in the Coverage framework. GIO based WCS decoders are

and Conflguratlon coverage plug-ins into the WCS Coverage framework. The GIO

for WCS GIO decoder is a complex raster sub-system by itself that feeds raster and

Decoders metadata of the imagery to the WMS and WCS services. GIO decoders
(Raster and Coverage decoder implementations) wrap native ERDAS
IMAGINE raster engine using JNI and use the NCI (Native Code
Isolation) framework to provide metadata and raster data.

As of APOLLO 10.0, the GIO decoders are not available on Linux
platforms.

NCI framework is a set of libraries for managing a pool of Java
processes (that use native code via JNI) isolated outside of a server
JVM.

The Raster Decoder Server (RDS) is an external process to access
raster datasets that can be pooled and managed using NCI Process
Manager service.The ProcessManager service is responsible for
spawning a new instance of RDS or utilizing one from a pool of existing
RDS process in order to fulfill imagery request. The datasets cached,
size of the pool, memory allocated, and other options are configurable
via the following files: rds.properties and processmanager.properties.

The rds.properties file is located in the file nci-rds.jar that can
be found in the directory <APOLLO_HOME=>\tools\native\nci. To gain
access to the file you can use a compression tool like WinZip, 7zip,
WinRar, etc. Extract the rds.properties file, modify it and then
replace the original contents of the jar file with the modified file.

v

It's important to understand that the application server must be
stopped in order to modify the nci-rds.jar file. If the server is running
you will encounter problems trying to save the modified
rds.properties back into the jar as it will be in use by the RDS
process. Failure to stop the server prior to modifying the JAR may
result in corruption of the JAR and failure of the
application.rds.properties:

Table 9: rds.properties Configuration elements

Elements

Description and examples

cache-these-many-datasets

Limit the number of datasets in cache to this value.

cache-per-band(MB)

Limit the number of blocks in cache, in Megabytes, so that it doesn't exceed
this value.

raster-heap-size(MB)

Limit the maximum heap the native raster system can use. This helps prevent
out of memory issues especially when generating pyramids for stipped TIFFs
(or similar file formats) during crawling or serving WMS requests. Set to -1 if
you don't want to it to use maximum available memory

warn-virtual-memory(MB)

This property is used by the native code when it reports the memory
consumption of the RDS. Start freeing up resources (shrink the cached
datasets) when the handle count reaches this value.

max-virtual-memory(MB)

This property is used by the native code when it reports the memory
consumption of the RDS. Abort/quit RDS when the memory reaches this value.

warn-handle-count

This property is used by the native code when it reports the memory
consumption of the RDS. Start freeing up resources (shrink the cached
datasets) when the handle count reaches this value

max-handle-count

This property is used by the native code when it reports the memory
consumption of the RDS. Abort/quit RDS when the handle count exceeds this
value.

Table 9: rds.properties Configuration elements (Continued)

Elements Description and examples

intf-impl Add the interface-implementation fully classified names separated by
hyphen ("-") as shown below:

intf-

impl=com.lggi.esp.coverage.decoder.raster.gio.GIORasterCoverageRemote-
com.lggi.esp.coverage.decoder.raster.gio.GIORasterCoverageRemotelmpl

processmanager.propert This file contains the tunable parameters for the spawned RDS

ies: processes, specifically the JVM settings, pool size and other options.
This file is located in the WEB-INF/classes directory of the deployed
web application WAR file.

Table 10: processmanager.properties Configuration elements

Elements Description and examples

rds.classpath Defines the classpath for the use by RDS when a
new process is created. It references the .jar files
located in the <APOLLO_HOME>/rds directory by
default.

rds.security.policy Defines the default java security policy for access to
RDS resources.

rds.log4j.properties Defines logger configuration used by RDS for
logging errors. It is declarative by nature and can
be customized to use any of the valid loggers
provided by Log4J or a custom logger based on

Log4J api.

rds.debugrds To enable debugging of the RDS process. Set to
true to enable debugging. Default is false.

rds.haltonstart Flag indicating if the RDS process should halt once
it has started. Used for debugging. The default is
false.

rds.jvm.options Defines all JVM options used to fine tune the RDS

process. Each option is separated by a space.
Example: -Xms64m Xmx128m -
XX:+AggressiveOpts

rds.max.pixel.request.size Defines the maximum pixel request that RDS can
process. The default value is 25000000.

processmanager.mim.process The minimum number of RDS processes to keep in
the pool for servicing requests. The default is 1.

Table 10: processmanager.properties Configuration elements (Continued)

Elements Description and examples

processmanager.max.process.count The maximum number of RDS processes to keep in
the pool for servicing requests. The default is 5.

processmanager.keepalivetime.inmins The time in minutes that an RDS process should

remain in the pool before being cleaned up if there
is no activity. The default is 10.

processmanager.getprocess.timeout.inseconds| The time in seconds between the

processmanager.getprocess.numentries properties
to get a free process from the pool. The default is
30.

processmanager.getprocess.delay.inseconds | Deprecated

processmanager.getprocess.numretries When a request is received by the

ProcessManager, the number of times it will try to
get a free process from the pool of RDS processes
before failing and generating an exception.

Tuning the Execution
Environment

Java Virtual Machine (JVM) is the engine which activates the services
and executes the requests. Please use Sun JDK 1.5.

The more RAM and the higher the heap size (parameter -Xmx) set to
the JVM, the less swapping and garbage collection time will be
consumed. Except if you have a good expertise on application servers
tuning, DO NOT set the -Xms parameter, it often leads to worse
performance than if not set.

For heavy loaded services or large outputs, "OutOfMemory error"
messages may be encountered even though the -Xmx parameter is
properly set. Consider setting the "MaxPermSize" parameter as well, it
appears to help better use the heap size. When set as an option to the
Java program, the syntax is '-XX:MaxPermSize=128m' in order to set it
to 128 MebaBytes.

Servlet Engines are not all the same. Apache Tomcat is light and is one
of the most commonly used in the world. Application Servers (JBoss,
WebLogic) have a bigger infrastructure and more functionality, but
require more configuration and tuning. ERDAS APOLLO Server
supports the following Servlet Engines:

¢ Tomcat

« JBoss

« BEA Weblogic

5. During setup, configuration and tuning of the web services, having
accurate logs help fine-tune the configuration. Following that, set the
log level to "Warning" or only "Error" in order to avoid writing hundreds
of lines of text in the log files. Still better, configure the web services to
log asynchronously using JMS, ideally in a JDBC source.

6. For large scale environments with 100's of requests per second,
consider using clustering solutions at the database level and/or at the
Application Server level.

7. Frequently updated files or directories, like the caching directory, the
data or log files, should be stored locally on the server machine rather
than on a network drive or path. It will limit the network traffic and ensure
those updates do not impact the response times.

Conclusions The figure below summarizes the various types of optimizations that
must be considered.

Figure 10: The GetMap optimizations with an Oracle source

MNumber of SQL
queries exectuted GetMap request

JDEC
connection type
{Thin J/OCI}

RDBMS

E
g

vrressnrancnvavssfgplucncannns

{Oracle) @
z Y

wvs 1 S QA

Provider 4 I s

? & =

'
¢ result -ﬁm Map (GIF,JPG, PNG, _ image)

RDBMS settings B
Oracle version x: Portrayal 15
index & g Rules E
data optimisations 5. xiB
Z: olc
4’ Language, 25
optimisations, T
Metwork volume of calculations, z=

. data - Metiwork

trafflc_& extracted from addmon_al traffic &
bandwidth the database presentations bandwidth

Tools and Viewers

This chapter uses Unix syntax and scripts, generally suffixed by .sh
when providing examples of commands. If using a Windows
platform, remove the suffix or replace it with .bat.

The Service Tester The Service Tester runs as a Java Applet in the Web browser. It allows
building and sending OGC-WMS and OGC-WFS requests to any
compliant server. The tool is available at: http://localhost:8080/erdas-
apollo/servicetester/index.html and an extensive online help
provides a complete description of its functionality. The screenshot

below is an example of what the tool looks like.

Figure 11: Service Tester applet
S —

seerdas ERDAS APOLLO SERVER

Request Result
=7umlversion="1.0" encading="UTF-8" 7= ~
=IDOCTYPE HTML PLUBLIC "-f5oftQuad SoftwarelDTD HoTMetal PRO B.0::19¢
=l-- template for WFS get capahilities through a POST --=
=ngowfs GetCapabilities =html xmins="http:Mwas w3 argll 9980xhtml" xmllang="en"=
version="1.0.0" =head=
service="yWF35" =title=Erdas Server Service Tester=fitle=
¥mins:ogowfs="http M. apengis. nethwfs" = =meta hitp-equiv="content-type" content="texthtml; charset=iso-8859-1" /= =
=meta name="description" content="vour website description goes here" /=
=meta name="keywords" cantent="your keywords goes hera" f=
=link rel="stylesheet" href="_Jfcssieim.cas" type="texticss" media="screen,projer
=fhead=
=hody=
=div id="GlobalErdasSkin"=
=div id="container"=
=0=
=TABLE BORDER="0" CELLPADDIMG="0" CELLSPACING="0"WIDTF »
< | >
Templates Servers MimeType |te>¢l‘xm| v|
WiMS capabilities 1.0.0 ~||ERDAS WWMS on ATLANTA Simple Image | qe e Tarmoiaie] |
WMS capahiliies 1.1.1 ERDAS WCS on ATLANTA Tiled Imagery RESAIETIRIATEE DB [FESi
WFS GET capabilities 3 S on ATLANTA .
WFS GET describe type ERDAS Transaction WFS on ATLANTA ™ Allow gzip Do et |
WS GET get feature ERDAS GML 3.1.1 WFS 1.1 on ATLANTA Pap Request | Do Postoet |
WFS POST capahilities
WFS POST describs type Clear Request | Clear Result |
WFS POST get feature
WS POST lock feature FormatRequestl FormatResuItl
WFS POST Insert
WFS POST Delsts Agd Server | Salect Server |
WFS POST Update
WCS GET capahilities [~ Use http 1.1 [Use chunck
WCS GET describe caverage |
WS GET coverage 1.0.0 v Help |

Server |http:IIapoIIotest:818DIerdaS-ap0IIO-demDIServicetesterrindex.html |

User |

Fassword |

Some typical use scenarios of the Service Tester are:

Customizing Service
Tester Templates

Data Indexer

In the server list zone, select "ERDAS Basic WFS on ATLANTA" and
click on the "Select Server" button.

You will find it at: http://localhost:8080/erdas-
apollo/servicetester/index.html .

In the templates zone, select "WFS POST capabilities" and click on the
"View template" button. The request appears in the "Request" zone.

Click on "DoPost". The response, and XML document, appears in the
"Result" zone.

. The server URL can be encoded manually in the bottom text field.

Manually type the request in the "Request" zone.

Since ERDAS APOLLO 3.2, the set of templates available in the lower-
left zone of the tool can be customized.

The list of templates is configured in a text file, located in a sub-directory
relative to the tool's HTML page under
com/ionicsoft/wfs/tester/template . The default text file name is
templates.txt but this name can be changed through the
TEMPLATEFILE" parameter in the tool's HTML page. Note that the
template file name can be changed but not its location.

By default, the template file contains a set of templates which are stored
in the postapplet.jar archive located in the same directory as the
tool's HTML page. It is possible to extract some of those templates and
change them or create custom ones. In this latter case, it will be
necessary to update the templates.txt file to mention the custom
templates. Templates can be removed from the list.

v

The template directory also contains a 'servers.txt' file,
corresponding to the "SERVERLIST" parameter in the tool's HTML
page. This file contains a list of predefined services that appear in
the lower zone of the tool. List of visible services can be changed
either in the HTML page or in that file.

In order to publish a seamless collection of images or coverages, first
configure each of them individually, format, world file, extent, etc., and
then add an indexing system on top to allow fast and efficient extraction
of the relevant items. To build those indexes as well as allow fast search
in Shapefile documents, various tools are provided as part of the
distribution:

Image Indexing with the
Data Manager

Coverage Indexer

Shapefile RTree Builder

* Indexing a set of coverages using a WFS.
* Indexing a Shapefile

Once a collection of images has been established, possibly with their
respective world file, they can be viewed either as single images in a
WMS, either as a set of layers, one per image or as a seamless
collection of images. for those last two cases, the images need to be
indexed so that at runtime the WMS can rapidly find each image based
on the indexing properties. The Data Manager can be used to achieve
this indexing, through the "Index Data" checkbox in the Create Service
wizard. The indexing operation takes place as soon as you click the
Finish button at the end of the wizard.

Along with the dataset files, there can be metadata files (See the WCS
Provider types for more information on coverage metadata
configuration). To index them, use the Data Manager GUI.

In order to handle spatial data efficiently, a database system needs an
indexing mechanism that will help it retrieve data items quickly
according to their spatial location. However, traditional indexing
methods, e.g., linear, hash, B-Tree, Quad-Tree are not well-suited for
data objects located in multi-dimensional spaces. The schema below
shows how R-Tree with is dynamic index structure meets this need.

Figure 12: RTree Structure

|~_L~lﬂ~_ .

l | | | !
|u11||\;12| |m3|u:4| | |N15|N:6| | [N17] M8 N9
Yy oY oY v v v oy v Yoy v

Y

To Data Tuples

N1 PR
N1

Vector Services
Utilities

An R-tree is a height-balanced tree similar to a B-Tree with records in
its leaf nodes containing pointers to data objects in the database. A n-
dimensional rectangle determines the bounding box of the indexed
spatial object. Each parent node entry contains the smallest rectangle
that spatially surrounds all rectangles in the child node as shown in the
schema above.

The RTree Builder tool creates a file with the name of the Shapefile and
the .rtr extension. That file, named "index file" allows faster searches in
the data, thanks to the "RTree" indexing mechanism.

The RTree Builder tool is part of the command-line tools provided in the
distribution. It is also available behind the "Index Data" link in the

Administration Console when managing a ShapeFile provider. To use
the command-line tool, open a console window. If <APOLLO HOME>
represents the directory in which ERDAS APOLLO was installed, type:

cd <APOLLO HOME>/tools/ows
./runrtreebuilder.sh <APOLLO HOME>/data/erdas-
apollo/shapes/atlanta roads 30 15

Running the script with no argument will produce an explanation of
each command:

Usage :com.ionicsoft.wfs.provider.shapev2.RTreeBuilder basedir

shapename maxcapacity mincapacity

basedir : base directory of the shape files

shapename : the shape file name pattern (without any extension)

maxcapacity : RTree maximum node capacity

mincapacity : RTree minimum node capacity

Example : com.ionicsoft.wfs.provider.shapev2.RTreeBuilder
<APOLLO_ HOME>\data\erdas-apollo-demo\shapes\atlanta

futurelanduse 6 3

A recent performance analysis indicates that the values '100, 50’
are best choice for most types of data.

At the time of setting up a ERDAS WFS provider, you need to have an
XML Schema document for your feature types and a mapping
document for the servlet to achieve the correspondence between your
schema and the data source. In addition to the automatic generation
capabilities found in the Administration Console, various command-line
tools allow to build those documents as well as copy some data from
one vector source to another.

Schema Generator

This tool is part of the command-line tools provided in the distribution.
Its role is to build the database generation script based on a given XML
Schema of feature types. It exists for two databases: Oracle and
PostgreSQL.

To use it, open a console window. If <APOLLO_HOME> represents the
directory in which ERDAS APOLLO Server was installed, for Oracle

type:

cd <APOLLO_HOME>/tools/ows

cp <APOLLO HOME>/config/erdas-
apollo/providers/vector/boston ora.*
./runoraschemagen.sh -schema boston ora.xsd -mapping
boston ora.xml -out boston ora.sql

For PostgreSQL, the script is named runpgschemagen.sh.

Running the script with no argument will produce an explanation of
each command:

command line arguments are
Common options
-schema SCHEMAURL [-mapping MAPPINGURL]
where SCHEMAURL is a URL to the schema file
where MAPPINGURL is a URL to the mapping file
-verbose to output more information
-forceauto to use an auto mapping if none is provided
-usetargetspace to dump types belonging to the schema target
namespace
-ignoreknowntypes to ignore types derived from feature
association , geometry property types...
-usepkstring to specify the use of a string as the primary key
type in mapping auto SQL generation options
-bestfit tries to only use types reachable from the schema target
namespace
-out to output to the given file in utf-8 format
SQL generation options:
-intermedia to generate Oracle Intermedia compatible layout
-remove to generate remove orders
—-delete to generate delete orders
-lock to generate the tables used in the lock mechanism (no other
option is required)
Mapping generation options:
-autogen to generate autogen mapping
Autogen Specific options:

-infogen to generate info section with all operations enabled if
not present

-srs SRS to specify an srs for the info gen section
-allowfidinsertion to allow the insertion of fid during insert
operation

From-SQL Generator

-lax to apply the laxist GML model verification (see also the
allowLAXGMLModel mapping tag)

The output of the command is displayed in the file which name is
prefixed with "-out", or on the standard output.

This tool is able to build mapping and schema files based on database
models. It currently supports four database types: Oracle, PostgreSQL,
ESRI Shapefile and ESRI ArcSDE. For each database type, a different
script is executed. That tool is also accessible through the
Administration Console when managing vector services: the "Generate
Types and Mapping" link executes the same processing.

To use the command-line tool, open a console window. If
<APOLLO_HOME> represents the directory in which ERDAS APOLLO
Server was installed, for Oracle data type:

cd <APOLLO_ HOME>/tools/ows
./runfromsqglora.sh

Running the script with no argument will produce an explanation of
each command:

command line arguments are

-connection CONURL -table TEMPLATE [-schema SCHEMA] [-mappingfile MF] [-typefile TF]
[-srs SRS] [-gml3] [-cl x] [-agressive] [-deprecated]

or

—-factory FACFILE -name NAME -table TEMPLATE [-mappingfile MF] [-typefile TF]

or (for Shapefiles)

-PATH LOCAL -MULTIPATH MULTIPATH -table TEMPLATE [-schema SCHEMA] [-mappingfile MF]
[-typefile TF] [-srs SRS] [-gml3] [-cl x] [-agressive] [-deprecated]

where CONURL is the connection string

where FACFILE is the factory file

where NAME is the provider name

where LOCAL is the path to the shapefiles directory (only applies to generator based
on Shapefiles)

where MULTIPATH is a semi-colon-separated set of paths (this parameter has precedence
on the "PATH" parameter)

where TEMPLATE is a table template (accepts '$', a single name or a comma separated
list)

where SCHEMA is the schema name

where SRS is the default srs to use (syntax can be code:value or
urn:opengis:def:crs:...)

where SRSOVER allows to force the overwrite flag and ignore the data SRS

where MF is the output mapping file (default is mapping.xml)

where TF is the output types file (default is types.xsd)

where gmlX is gml3 to target gml3 feature model, gml3.2 to target gml3.2 feature
model

where cl is the GML-Simple Profile conformance level

where agressive scans the SQL source to set the geometry type

where deprecated allows the use of gml3 deprecated geometries

It is important to understand that the -connection option lets you add
other parameters such as -schema, -srs, -gml3, ... so that you can have
a mapping and a types file built from just a connection to the database.
In counterpart, the -factory option starts from a pre-defined provider,
with a mapping and types file already built. And those additional
parameters, instead of being passed as arguments to the command,
are taken from the existing files. The main use case for this -factory
option is to build a more complete and explicit mapping file based on a
simple one such as one expression and SQL mapping.

Example:

cd <APOLLO_ HOME>/tools/ows

./runfromsglora.sh -connection
oracle://myhost/user+myuser/password+mypassword/SID+mysid
-table ROADS -schema ATLANTA -mappingfile roads map -typefile
roads typ -srs EPSG:2240 -gml3 -agressive

Remarks:

For Oracle data, the -table and -schema arguments values must be
uppercase.

For PostgreSQL data, the script is named runfromsqlpg. sh.
The -table and -schema arguments values must have the exact
case (generally, lowercase).

For Microsoft SQL Server 2008 data, the script is named

runfromsqglsqlserver.sh.

For ESRI ArcSDE data, the script is named runfromsqlsde. sh.

For ArcSDE connections to succeed, add the jsdeXX _sdk.jar file
(and possibly the jpeXX_sdk.jar and icu4j.jar files) provided with
the ESRI ArcSDE product in the <APOLLO_HOME>/tools/ows/lib
directory. XX stands for the ArcSDE version - 82 for 8.2, 83 for 8.3,
90 for 9.0, 91 for 9.1,... .

For Shapefile data, the script is named runfromsqglshp.sh. The -
table values must be lowercase.

For this tool to successfully run on Shapefiles, reference a factory
file (narameter -factory) with an entry for the shapefiles, or use the
-PATH or -MULTIPATH parameter for a local shapefile directory.

For DGN V7 and V8 data, the scriptis named runfromsqlfme.bat.

The produced mapping file contains all the columns from the table.
Manually remove the columns that are not to be published.

The mapping file does not mention a Primary key column. It is set
to <NoPrimary>. This can be replaced with a tag that has an actual
set of columns that will be used to produce the "fid" or "gml:id"
attribute.

The mapping table does not mention any <Lock> column needed
for transactional feature types.

The mapping and types files are overridden if they exist.

The mapping and types file paths can use absolute or relative paths,

relative being relative to the tool directory. ".." can be used, and
under Windows, "/" or "\" or mixed.

* The srs parameter is used to fill the mapping file with the
BoundingBox information. The syntax used for the srs parameter
will be set into the mapping file, either code:value or
urn:opengis:def:crs:... . For databases where the srs value is set in
the database (in ArcSDE, for example), the srs given as argument
will be added to the mapping file. The original srs will be set first,
unless the -srsover is set to true. In that case, only the srs given as
argument is added to the mapping file. In addition, the “overwrite”
attribute of the <SRS> element is set to true.

* The set permitted Operation is "Query". This needs to be changed
if transactions are to be allowed.

* If some of the published columns from the mapping file are
removed, also remove the published properties from the schema
file.

* Under Oracle, the schema file gives geometries a type named
"gml:GeometryAssociationType" or "gml:GeometryProperty Type" if
the -gmI3 option is used. Replace it with the actual geometry
property type: gml:PointPropertyType,
gml:LineStringPropertyType, gml:PolygonProperty Type or Multi-*
geometry property types as described in the OGC WFS 1.0.0
specification. An alternative is to use the -agressive option to let the
tool guess the appropriate geometry type.

+ The GML-Simple Feature profile option (-cl n) only produces valid
output if combined with the -gmI3 option. The "n" argument is the
conformance level, which value can be 0, 1 or 2. Currently ERDAS
APOLLO produces the same output whatever level is chosen.

* An alternative to the command-line From-SQL generator tools is to
use the Data Manager, in which the action "Create Types and
Mappings" does the same job as those command-line tools.

The WFS Loader Often WFS feature collections, available either as GML files or in a
WEFS, need to be populated in another WFS. The WFS Loader tool
helps achieve this transfer operation.

The WFS Loader tool is located in the <APOLLO_HOME>/tools/ows
directory and can be executed from the system's command prompt. As
soon as an instructions file (see below) has been completed and is
passed as argument to the tool, run this tool in a console window to load
features into the chosen WFS.

Sample request:

cd <APOLLO_ HOME>/tools/ows
./runwfsloader.sh ./xmlscripts/GML2WEST.xml

Configuration of the input feature collection and the output WFS-T:

The configuration of the input feature collection and destination WFS-T
can be accomplished by setting up an XML file, named XML Script. A
set of sample scripts are provided in the distribution, under
<APOLLO_HOME>/tools/ows/xmlscripts. In this directory, the
GML2WFST.xml script allows the population of a set of GML files into
a WFS-T. The WFS2WFST.xml script extracts the features from a WFS
to load them into the WFS-T. The following example displays the
content of the GML2WFST.xml script for a fictive set of sample data
intended to populate a set of GML files.

<SCRIPT>
<!-- this script must be executed from the
<APOLLO HOME>/tools/ows directory -->
<TRACE VALUE="*" />
<DEFINELOG
TYPE="FILE"
FILENAME="./xmlscripts/gml2wfstlog"
FILESIZE="5000000"
MAXFILE="10"

ENABLE="*"
ERRORLEVEL="100"
/>
<!-- Relative "file" url is relative to the current directory

when running the command -->
<Factory NAME="file:///./providers.fac" />

<FeatureServer ID="FS" NAME="MY WFST ORA" />
<!-- We loop in a gml files directory -->
<LOOPDIR VALUE="../../data/erdas-apollo/gml" ID="GML FILE" >

<Load FROM="GML FILE" SCHEMA="FS" ID="FC1" ZIP="false"
COUNT="true" />

<Insert SIZE="1" ERROR="false" >
<PARAM VALUE="FS" />

<PARAM VALUE="FC1" />

</Insert>

</LOOPDIR>

<!-- The <LOOPDIR> block can be repeated with other directories
-——>

<Destroy NAME="FS" />
</SCRIPT>

XML Scripts Structure

The general structure is:

<SCRIPT>
<TRACE ... />
<DEFINELOG>

</DEFINELOG>
<Factory ... />
<FeatureServer ... />
<LOOPDIR ... >
<Load ... />
<Insert ... >
</Insert>
</LOOPDIR>
<Destroy ... />
</SCRIPT>

The starting XML tag is always <SCRIPT> and the corresponding
ending tag is </SCRIPT>.

The first two tags, namely <TRACE> and <DEFINELOG> are for
logging and debugging purposes. This allows for the storage of
information useful for debugging and system checks in log files.

To set the level of debug information required for all subsequent
instructions in the script set the <TRACE> tags. The debug levels are:
info, warning, minor, fatal, debug. The level "*" signifies that all
debugging information is to be displayed.

The <DEFINELOG> tag sets the log file and log level to be used when
the subsequent Feature Servers are invoked. This tag has the same
role and attributes as the <LOGCONFIG> tag found in the Erdas Web
Services providers.fac files. See Servlet-Specific Configuration
Parameters (providers fac). This tag, when defined, will replace the
setting in the default providers.fac files, thus grouping the logging
information in a single file that is bound to the tool.

The next two tags, <Factory> and <FeatureServer>, relate to the
destination WFS-T.

The <Factory> tag references the WFS configuration file, generally
named providers.fac, that is used to access a WFS. In the example
above, the file that must be referenced by a URL is named wfs.fac and
it is in the current directory <APOLLO_HOME>/tools/ows. This file
contains the definition of one or more WFS providers: provider type,
connection string to a database, mapping and schema files. See Data
services for more information about WFS provider configurations.

The <FeatureServer> tag allows opening a connection to a given WFS,
identified by its provider name (the NAME attribute), and by the
previous <Factory> definition. The "ID" attribute will contain an identifier
that will be used in subsequent instructions.

The next tag, <LOOPDIR>, allows looping in the given directory as well
as applying the actions defined in the block between <LOOPDIR> and
</LOOPDIR>. The "VALUE" attribute provides the GML files with a
directory path. The "ID" attribute is an identifier that will be used in
subsequent instructions.

Note that if there are several GML files directories, the <LOOPDIR>
block can be repeated.

In the loop, call the <Load> instruction to load the feature collection from
a GML file. Then, call the <Insert> instruction to save this collection into
the destination WFS.

The <Load> tag attributes reference the current GML directory. The
"FROM" attribute is the looping variable in the GML directory. The
features are loaded and validated against the Feature Types schema
defined for the feature server referenced by the "SCHEMA" attribute.
Do not compress the data (ZIP ="false") but make a count of the
features (COUNT="true"). The loaded feature collection will have the
"FC1" identifier.

The <Insert> tag saves the collection, referenced through the tag
<PARAM VALUE="FC1"/>, into the WFS which is referenced by the tag
<PARAM VALUE="FS" />. Note that the <Insert> tag has a "SIZE"
attribute set to "1" and an "ERROR" attribute set to "false". This means
that one feature will be saved at a time. The failing inserts will be logged
but they will not interrupt the process. Once the features are set, the
SIZE value can be raised to decrease the uploading time.

The last tag, <Destroy>, will release the feature server connection.

Customized Configuration of the WFS Loader Tool

1.

Update the wfs.fac file to have a provider correspond to the WFS.
ERDAS recommends defining a new provider with the proper
connection string and the appropriate schema and mapping files.
Ensure that the database tables are created before running the script
including the "LOCKTIMEOUT" table used for WFS Locking. Check
also that the mapping file allows the "Insert" operation to be performed
on the features types to use.

Put the GML files in one or more directories under
<APOLLO_HOME>/tools/ows/xmlscripts and check that the feature
definition corresponds to the schema of the WFS.

3. Duplicate the GML2WFST.xml files and update the copy to adapt the
<FeatureServer> and <LOOPDIR> tags according to steps 1 and 2.

4. Run the "runwfsloader" tool and pass it as argument the URL to the
XML script either using an absolute URL (file:/// ...) or a relative path
(./xmlscripts/...).

Features in a WFS

If the features are in a WFS instead of in a directory of GML files, it will
be necessary to execute a GetFeature request on the originating WFS
to place the resulting feature collection in the destination WFS-T.

A sample script corresponding to this situation is located at
<APOLLO_HOME>/tools/ows/xmlscripts/WFS2WFST.xml . The code
is:

<SCRIPT>
<TRACE VALUE="*" />

<DEFINELOG
TYPE="FILE"
FILENAME="./xmlscripts/wfs2wfstlog"
FILESIZE="1000000"
MAXFILE="10"
ENABLE="*"

/>

<Factory NAME="file:///../../config/erdas-
apollo/providers/vector/providers.fac" />

<FeatureServer NAME="ATLANTA VECTOR" ID="FSFROM" />

<FeatureServer NAME="TARGET WFST" ID="FSTO" />

<DefineRequest ID="R" >
<GetFeature xmlns:gml="http://www.opengis.net/gml"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:wfs="http://www.opengis.net/wfs">
<wfs:Query typeName="roads" >
<ogc:PropertyName>*</ogc:PropertyName>
</wfs:Query>
</GetFeature>
</DefineRequest>

<GetFeature ID="FC1" COUNT="true" >
<PARAM VALUE="FSFROM"/>

<PARAM VALUE="R"/>

</GetFeature>

<Insert >
<PARAM VALUE="FSTO" />
<PARAM VALUE="FC1" />
</Insert>

Pyramid and
Mosaic Builder

Pyramid Builder

<Destroy NAME="FC1" />
<Destroy NAME="FSFROM" />
<Destroy NAME="FSTO" />

</SCRIPT>

In this script, a second <FeatureServer> tag has been defined for the
originating WFS (ATLANTA_VECTOR). The same definition rules
apply to this tag as for the destination WFS, except that this WFS does
not need to be transactional.

A <DefineRequest> tag, which is an OGC-WFS GetFeature request,
has been used to define the extraction request.

The query is actually executed through a subsequent <GetFeature> tag
that references the WFS ID (FSFROM) and the DefineRequest ID (R).
The resulting feature collection is given an ID (FC1), so that it can be
used in the subsequent <Insert> instruction.

The ending <Destroy> tag has been repeated for each WFS and
feature collection.

When rich or complex data (vector, coverages, imagery) are available
but someone just wants to serve basemaps, it is necessary to reduce
or tune the data size or quality by building a pyramid or creating raster
tiles based on an existing WMS. The following tools each allow to
produce a set of images suitable for basemaps.

This tool is able to create a pyramid of GeoTIFF images. The resulting
pyramid can be used to setup a high-speed WMS on a layer of images.

The pyramid builder takes a directory of images, any format Erdas
Image Server supports, and builds n- layers of GeoTIFF files, each of
these layers being decimated at a different level. The decimation level
is the integer number by which the pixel width and height of each image
will be divided to create the level of the pyramid. From one level to
another, the tool uses the bilinear interpolation method.

From a performance point of view, it is not worth building a pyramid with
lots of small images at one level. The tool is able to cluster the images
if their pixel width or height is smaller than a specified value. The empty
spaces in the mosaic will be filled with the color defined by the '-bc'
parameter.

SYNOPSIS

runpyramid.sh -d [SOURCE FILE/DIRECTORY] -o [OUTPUT DIRECTORY] -
s [SOURCE SRS] -m [MINIMUM IMAGE SIZE]

WMS Tiler

-bc ([RED], [GREEN], [BLUE]) [DECIMATION
LEVEL], [DECIMATION LEVEL], ... , [DECIMATION LEVEL]

DESCRIPTION

create a pyramid of geotiff images, using images from [SOURCE
DIRECTORY]

source images srs is [SOURCE SRS], result images pixel size 1is
at least [MINIMUM IMAGE SIZE]

create one directory per [DECIMATION LEVEL] with image resolution
1/ [DECIMATION LEVEL]

[DECIMATION LEVEL] should be an integer greater than 0, default
is 1

-d source directory or source file, required

-o output directory, optional

-s source srs, required except if source files are valid Geotiff
-m cluster the result layer of geotiff images, if their pixel
sizes are smaller than [MINIMUM IMAGE SIZE], optional

-bc background color used for the clustering,

[RED], [GREEN], [BLUE] are values between 0 and 255, default value
is (0,0,0), optional

Forexample, A user wants to create a pyramid from a layer of 9 images,
each one is 20000*10000 pixels.

cd <APOLLO HOME>/tools/ows
./runpyramid.sh -d ./layer/ -o ./pyramid/ -s EPSG:26910 1,4,16,64

This command will create 4 directories, each one with 9 GeoTIFF files
of sizes: (20000,10000), (5000,2500), (1250,625), (312,156). The
images at the highest level of the pyramid are small, which is not
optimal. The user can use the "-m" cluster option to avoid this:

Jrunpyramid.sh -d ./layer/ -o ./pyramid/ -s EPSG:26910 -m 400 -bc
(255,255,255) 1,4,16,64

The highest level of the pyramid will then be clustered, producing a
single GeoTIFF file of size (937*468). The empty spaces in the mosaic
will be filled with the white color.

This tool produces a mosaic of Geotiff image tiles based on a request
to a remote WMS service. The tool provides a wide set of options to let
you accurately define the size of each tile, its accuracy, the scale at
which the maps are extracted from the remote service,

In a second phase, the produced tiles can be indexed and then exposed
as a new WMS service, which could provide much better performance
than the original WMS, either because that original service is not always
available, or because it manages vector or coverage data which are
often overrated when a basemap is expected.

Note that this tool, if executed several times with a different scale value,
will let you build a pyramid of tiles which content varies from one scale
range to another. At the most, you could use as remote WMS a WMS
over an OGC Web Map Context, this context addressing several
different WMSes.

NAME
WMSTiler: create Geotiff images tiles from a remote WMS
SYNOPSIS

./runwnstiler.sh -box [xmin], [ymin], [xmax], [ymax] -srs [srs]
-scale [scale]

-tile [xSize], [ySize] -buffer [percent]
-url [WMS url] -layers [layernamel], ..., [layernameN]
-styles [stylenamel], ..., [stylenameN]
-dir [out directory path] -file [output root file
name]
—-thread [thread count] -noclobber [true]|false]
DESCRIPTION

create Geotiff images tiles from remote WMS layers (-url, -
layers and -styles parameters).

The tool will create (h*v) Geotiff files of pixel sizes
defined by the -tile parameter.

Each tile will cover the exact area necessary to match exactly
the scale (-scale).

The numbers of tiles are computed so that the whole layer
will cover at least the defined bbox (-box and -srs).

Tile request bounding boxes are increased by a percentage (-
buffer), then cropped.

Each tile is written into a directory (-dir) using the name
[-file] xindex yindex.

-box the box to cover

-srs the request srs (expressed as EPSG:code)

-scale the scale denominator of the resulting layer tiles
(e.g. 100000)

-tile the pixel sizes of the resulting tiles (default is
512,512)

-buffer the percentage of buffering around the requested tiles

(between 0 and 1, default is 0.25)

-url the url of the source wms

-layers the list of source wms layer names

-styles the list of source wms layer styles (default is
default)

-dir the output directory path

-file the output tiles root file name (default is [WMS
name] Tile)

-thread the number of threads, default is one

-noclobber if true, existing tiles will not be re-
fetched/overwritten, default is false

EXAMPLE

Catalog Web
Interface

Log In to the Web
Application

Searching and Browsing
Content

./runwmstiler.sh -box -180,-90,180,90 -srs EPSG:4326 -scale
170640906 -tile 256,256
-buffer 0.25 -url http://localhost:8080/erdas-
apollo/vector/WORLDWIDE
-layers cities,admin98 -dir ./WMSTilerTest

The Catalog Web Interface is a web application offering to users the
ability to manage - publish, search and browse - their data. It also offers
administration tools for the Catalog service.

Basic workflows on this Catalog Web Interface are introduced in the
quickstart guide.

If browsing data is accessible for everyone, several operations are
limited to users who are logged in (f.i. publishing content, detailed in
Publishing content).

To log in to the application, you need credentials (login and password).
These credentials allow you to fetch some corresponding roles that are
needed to activate some specific actions of the web interface.

The login process itself is explained in Authentication.

Browsing the catalog is available from the Browse page (see upper left
of the web interface). This page shows a form containing a drop-down
list and a text field.

This form is quite simple to use. The drop-down list enables the user to
filter his search to specific object type. Available types are : All,
Services, WFS, WMS, WCS, Feature Types, Map Layers and
Coverages.

In the text field, the user can enters keywords matching data that need

to be discovered. Those keywords can be specified using advanced
formatting and facilities. Here is an excerpt:

Table 11: Keywords Operators for Advanced Searches

Symbol | Usage Effect

AND Between two keywords. | Logical AND. Example: "road AND
Atlanta".

OR Between two keywords. | Logical OR. Example: "road OR Atlanta".

0 Surrounding keywords. | Logical Group. Example: "(road OR
Atlanta) AND city".

Advanced Search The advanced search panel can be opened by clicking the arrow on the
left edge of the browse panel.

Figure 13: Advanced Search

.
e d
eCl'AaS ERDAS APOLLO
Erowse Publish CSw 150N Adrmin admin | Logout
[&l Services 1| |[Search |
C Page 1 2/ 34 5678210 »» from more than 500 records A=A
Sort by: F‘}"w“[VECTOR SERVICE Vector Data over Atlanta T2
RegDate =] DESC -] s
.':‘—i."‘*’ Vectar Service aver Shape flas on Atiats, mattaed by BROAS
Categories 'P* Ul http:ffapolio2. erdas. corm: 2081/ erdas-apollofvector
+ -OGC_Services DR JATLANTA_WECTORPservice=wWFSkreguest =GetCapahilities
+-Generic Types Tags [Atlanta, shape, shapefie]
- “Catalog Objects .
+-ServiceResource Stag Map SERVICE Bing Maps WMS Wrapper 24
+! ClassificationScheme s WS wranmer for the Bing Maps ImageryServicalliant
'E'"USEI' Ul http:f fintegrate. onterrasys, com,BingMapsWiis SIS, ashy ?service=WMSE
request=GetCapabilities
+-Concept Tags[]
+ -hssociation

This panel offers sorting options and also a tree view of the object types
available in the catalog. Single clicking on an object type will search for
records of that type. Double clicking displays the definition of the object
type itself.

Use the contextual help (by pressing CTRL+ALT) to have more
information on that panel.

Publishing content This enables users to save their data into the catalog using an address
and a corresponding type.

The user is considered as the owner of data published that way. It
means that he's the only person (except the administrator) allowed to
delete or refresh (re-publish) them. Those actions are displayed in the
web interface using simple links:

Figure 14: Advanced Operations

weerdas ERDAS APOLLO

Erowse Publish CSw 150N Adrmin admin | Logout
[&l Services = |[Search |
Pagel 2 324/ 5 6 7 8 9 10 @@ from more than S00 records A~ a

VECTOR SERVICE Vector Data over Atlanta

Vectar Service aver Shape flas on Atiats, mattaed by BROAS
Url httpffapolio2. erdas. corm: 2021/ erdas-apollofvector/ A TLANT A_WECTOR Pservice = WFSErequest = GetCapabilities
Tags [Atlanta, shape, shapefie]

Sta,g Map ServICE Bing Maps WMS Wrapper ﬁ 2| £

WS wrgnimar for the Sing Mans Imagery Serviceliarnt
Ut http:f fintegrate. onterrasys, com,BinghMapsywiis fwiis, ashi?service=WMSErequest = GetCapabilities

The process is explained in Publish a service.

Testing the CSW When authenticated with admin role, a 'CSW' tab appears at the top left
endpoint of the web interface, linking to a CSW testing page.

This page offers a way to send CSW requests directly to the CSW
ebRIM endpoint of the Catalog, sitting at
http://<serverURL>/apollo-catalog/wrs/WRS.

Figure 15: CSW Panel

w“serdas ERDAS APOLLO

Erowse Publish CSW 150N Admin admin | Logout

This form can be used to send CSW requests to the CSYW ebRIM endpoint of the catalog, sitting at
http: f fdemn. ionicsoft. com: 80/apollo-cataloy/catalog/csw.
To chedk if the CSW endpoint is properly configured, please first try to fetch the Capabilities from the server. Restart CSW

Server status ; Started

<?xml version='1.0' encoding='utf-g' 7>
<GetRecords xmlns="http://www.opengis.net/cat/csu™
xmlns:xsi="http://www.w3.org/2001/ XHLSchema—
instance"
xmlns:ogo="http://www.opengis.net/oge"
version="z.0.2" service="WRS">
<fuery typeNames="RegistryChject's
<!-- Add your constraint here
<Constraint version="1.0.0">
<oge:Filter xmlns:oge="http://www,opengis.net/oge"s
<oge: And>
<oge:PropertylsLikes
<oge:PropertyNames/ Service
#Mame</oge: PropertyNames
<oge:Literal>%Atlantas</oge:Literals
</ogo:PropertyIsLikes
</oge:Ands
</ogo:Filters
</Constraint>
-
</ Querys>
</GetRecords»

Sample CSW requests: | - SELECT A SAMPLE - =] [Post request

Administration options

The left panel can be used to edit CSW requests. When clicking on
'Post request’, the request will be sent to the server, and the response
from the server will be displayed in the right panel. A set of typical CSW
requests are available in the drop down below the left form.

On the upper right of the page, a panel indicates the status of the CSW
enpoint, i.e. whether it is started or not, together with a button to force
a restart of the CSW endpoint. It must be noted that the CSW endpoint
will start automatically on demand; this status and button are for debug
purposes only, to force a restart and a cache flush of the CSW stack.

The catalog web interface offers as well some facilities to manage the
catalog. Those functionalities are in the Admin page (see upper left of
the web interface).

Only users with an 'admin' role can access this page: if the user don't
have this role, the Admin link is hidden to him.

Here are the functionalities:
+ See the list of the roles.

* Re-index the keywords: this operation is helpful if, for whatever
reason, the lucene index is not synchronized anymore with the
catalog content. The main case is to be able to move the server
without having to move the lucene index as well.

* Manage DB schemas : this displays a page that lists the currently
installed DB schema(s) and their version. If the the current DB
schema is not in sync with the APOLLO software version, this page
allows you to run the upgrade process.

The administrator's activity scope is extended to the data rights. Indeed,
the administrator has all rights on data: he can delete or refresh
everything, even he is not the owner of data.

Specifying the The ERDAS APOLLO system uses files to store information about the

Storage thumbnails, pyramid layers for catalog items, metadata for catalog
. . items, and the output from geoprocesses executed in the web client. By
Directories for default, those files are located in the directories specified in the table
Metadata, below.
Thumbnails, &
Pyramids
Table 12: Location of Metadata, Pyramid Layer, Thumbnail, and Geoprocess
Output Files
Resource Name | Directory
Thumbnails <APOLLO_HOME>\config\erdas-apollo\legend\coverage\EAIM

Pyramid Layers <APOLLO_HOME>\storage\EAIM

Metadata <APOLLO_HOME>\config\erdas-apollo\metadata\coverage\EAIM

WPS Output <APOLLO_HOME>\storage\wps\isms\process_output

To store these files in different directories, you will need to edit some
files in ERDAS APOLLO.

Changing the Storage 1. Navigate to the directory
Location for Metadata <APOLLO HOME>\config\erdas-apollo\
Files providers\coverage.

2. Open the file providers. fac.

3. At the bottom of that file, you will find a block of configuration
parameters.
Find the one the one that says METADATA TEMPLATE

< CONFIGURATICN:
<LOGCONFIG
TYPE="FILE"™
FILENAME="C:/ERDAS/ELIM Server/logs/coverageLog”
FILESIZE="1000000"
MAXFILE="10"
ENABELE="=*"
DELETECHNCLOSE="false"
ERROELEVEL="0"
MEMORYSIZE="z00"™
I
<GARBAGE LOOP="g00"™ IDLE="600" />
<GZIP THRESHOLD="50000000" />
<TRANSLATOR HOST="achamberstest'™ />
<METADATL TEMPLATE="{sbsolute}{id}/{nsme}.xwl™ DIR="C:/ERDLS/ELIM Server/config/erdas-apollo/metadata/coverage” /=
<CACHE DIR="C:/ERDAS/EAIM Server/cache/erdas-apollo/coverage™ USAGE="PERSERVLET" />
<TEMPMANAGER DIR="C:/ERDAS/EALIM Server/config/erdas-apollo/storage/coverage”/s>
<3TYLE DIR="C:/ERDAS/EAIM Server/config/erdas-apollo/rendering® VERSION="2" LOADER="sld" />
<LEGEND TEMPLATE="{ahsolute}{id}/{nawe}_ {style}.png"™ DIR="C:/ERDAS/ELIN Server/config/erdas-apollo/legend/coverage™ />
<STORAGE DIR="C:/ERDAS/ELIM Server/config/erdas-apollo/storage/coverage” />
<JMX REGISTER="true"/>
<SECURITY ALLOVEDPATH="C:/ERDAS/EAIN Server/config:C:/ERDAS/EAIN Server/data />
<DEFAULT>
<GDALPath»>C:/ERDAS/ELIM Server/tools/native/gdal</GDALPath>
</DEFAULT>

</ CONF IGURATION:

4. Change the directory currently specified to the directory where you
want ERDAS APOLLO to store your metadata files.

5. Save file providers. fac file and close it.

If you have already started your application server, you will need to
restart it for the change you just made to take effect.

Changing the Storage 1. Navigate to the directory
Location for Thumbnail <APOLLO HOME>\config\erdas-apollo\
Files providers\coverage.

2. Open the file providers. fac.

3. At the bottom of that file, you will find a block of configuration
parameters.
Find the one the one that says LEGEND TEMPLATE.

<CONFIGURATICH:

<LOGCONFIG
TYPE="FILE"
FILEMAME="C:/ERDAS/EAIN Server/logs/coverageLog"
FILESIZE="1000000%
MAXFILE="10"
ENAELE="+*"
DELETECONCLOSE="fal=se"
ERRORLEVEL="0"
MEMORYIIZE="z200"
i
<GARBAGE LOOP="g00"™ IDLE="g00" />
<GZIF THRESHOLD="50000000" />
<TRANILATOR HOST="achawberstest™ />
<METADATA TEMPLATE="{ahsolute!{id} /{name}.xml"™ DIR="C:/ERDAZ/ELIM Server/config/erdas-apollo/mwetadata/coverage™ />
<CACHE DIR="C:/ERDAS/ELIM Server/cache/erdas-apollo/coverage” USLGE="PERSERVLET" /»
<TEMPMAMAGER DIR="C:/ERDAS/ELIN Server/config/erdas-apollo/storage/coverage™/>
<STYLE DIR="C:/ERDAS/EAIM Server/config/erdas-apollo/rendering" VERSION="2" LOADER="=sld" />
<LEGEND TEMPLATE="{absolute}{id}/{nswe} {style}.png" DIR="C:/ERDLI/ELIN Server/config/erdas-apollo/legend/coverage"” />
<3TCRAGE DIR="C:/ERDAS/EAIM Server/config/erdas-apollo/storage/coverage” />
<JMZ REGISTER="true"/>
<SECURITY ALLOWEDFPATH="C:/ERDAS/EAINM Server/config:;C:/ERDAZ/EAIN Server/data" />
<DEFAULT=
<GDALPath>C:/ERDAS/EAIN Server/tools/native/gdal</GDALPath>
</DEFAULT>

</ CONF IGURATION=

4. Change the directory currently specified to the directory where you
want ERDAS APOLLO to store your thumbnail files.

5. Save the providers. fac file and close it.

If you have already started your application server, you will need to
restart it for the change you just made to take effect.

Changing the Storage The storage location for pyramid files is defined in three separate files:

Location for Pyramid
Files * im-providers.fac

* rds.policy
* processmanager.properties

If you want to change the storage location of your pyramid files, you will
have to change the definitions in each one of these files in order for
pyramid handling to continue to work properly.

Changing the Pyramid Storage Location in im-providers.fac

1. Navigate to the directory
<APOLLO HOME>\config\erdas-apollo\
providers\coverage.

2. Open the file im-providers. fac.

There are two different blocks of settings in this file. One set is for users
who are logged in to the APOLLO system. The other set is for users
who are not logged in to the ERDAS APOLLO system. You must
change the pyramid storage location in both blocks of settings in order
for your system to work properly. You must also specify the same path
in both blocks of settings.

To change the pyramid storage location in the block of settings for
users who are logged in to the system:

1. Find the PyramidDir parameter inside the EAIM block of settings.

2. Replace the directory path in the PyramidDir parameter with the
path to the location where you want to store the pyramid files.

<CREATE ID="ELIM" JCLALSS="cow.ionicsoft.wmtmap.provider.coverage.HierarchicalProvider™:>
<PARLN NAME="name" VALUE="ELIM"/>
<PARAM MNAME="title" VALUE="ERDAS Aipollo idvantage"/>
<PARAM NAME="ahstract" WVALUE="ERDAS Apollo Advantage default Coverage Provider "/»>
<PARAM MNAME="metzurl™ VALUE=""/>
<PARAM NAME="keyuwords" VALUE="Imagery, Archiwve, Ionic, ERDAS, Geotiff™/ />
<PARAN MNAME="backgroundWalue" VALUE="0O"/>
<PARAM NAME="srs" VALUE="EP3G:4326"/>
<PARANM NAME="mode"™ VALUE="dynsmic"/>
<PARAM NAME="exposure"™ VALUE 'SHOU_LGGREGETES”H}
<PARAM NAME="maxcache" WVALUE="S500"/>
<PARAM NAMNE="maxStitch" VALUE="S500"/>
<PARLM NAME="tmppath" VALUE="C:/ERDLI/ELIN Server/config/erdas-apollo/storage™/>
<PARAM NAME="indexingProwvider™ VALUE="./habel-application-context.xml™/ >
<PARAN MNAME="indexingZ3erver™ VALUE="WR3"/>
<PARANM MNAME="indexingType" VALUE="BABEL"/>
<PARLN MNAME="queryables" VALUE=Mfile:///C:/ERDLI/ELIM Zerver/config/erdas-apollo/queryables.xml™/ >
<PARAMELOCE NAME=Mcontact':
<PARAM NAME="Organization" VALUE="ERDLZ, Inc."/:>
<PARAN NAME="iddressType™ VALUE="Postal"/»
<PARLM NAME="lddressBody"™ VALUE="5051 Peachtree Corners Circle™s/>
<PARAM NAME="City"™ VALUE="Norcross"/>
<PARAM NAME="State" VALUE="GL"/:»
<PARLN NAME="PostCode" VALUE="3009Z"/>
<PARLN NAME="Country™ VALUE=FUSA"/>
<PARAM NAME="Person" VALUE="Customer Support"/:>
<PARAM NAME="Woice™ VALUE="+1 770 776 3400/ >
<PARAN NAME="Email" VALUE="supportBerdas.com"/:>
<PARAM NAME="OnlineResource™ VALUE="http://uww.erdas.com'/ >
</PARAMEBLOCK>
<PARAN NAME="GDALPath"™ VALUE="C:/ERDAS/EAIN Server/tools/native/gdal™/>
<PARLM NAME="owsinfourl"” VALUE="C:/ERDAS/ELIM Server/config/erdas-apolle/providers/coverage/eaim md.xml™/ >

<!—— uncomment thi=s to use an authenticsation wechanism is provided at the web-app container lewvel —->
<PARAM NAME="securityresolver™ VALUE="container"/>
<!—=— Also change the property in rds.policy and processmanager.properties files related to

gio pyramid generation where proxy filez are created-->
<PARAM NAME="PyramidDir'™ UALUE="C:KERDASHEAIH_SEEVErfStDrageKEAIH"f}
<PARAM NAME="VERYLARGETRIGGER"™ VALUE="Z500" />
<PARAN NAME="WH3_ REPROJECTICN QUALITY™ WVALUE="75" £
<PARAN NAME="WC3 REPROJECTICN QUALITY™ VALTE="75" />
<PARAN NAME="NODEEXCLUSIICON" VALUE="single"/:>
<FARLM MNAME="decoderListUrl™ VALUE="C:/ERDLZ/ELIM Server/config/erdas-apollo/providerss/coverage/decoder. txt” /x>
<PARLM MNAME="metadatalistUrl" VALUE="C:/ERDL3/EAIM Server/config/erdas-apollo/providers/coverage/metadata. tat”/ >
</CRELTE>

To change the pyramid storage location in the block of settings for
users who are not logged in to the system:

1. Find the PyramidDir parameter inside the EAIM_PUBLIC block of
settings.

2. Replace the directory path in the PyramidDir parameter with the
path to the location where you want to store the pyramid files.

<CREATE ID="EALIM PUELIC" JCLASZ="com.ionicsoft.wmtmap.provider.coverage.HierarchicalProvider™s
<PARAN NAME="nsme" VALUE="EAIN"/>
<PARANM NAME="title™ VALUE="ERDAS Apollo Advantage Public"/>
<PARAM NAME="abstract” WALUE="ERDAS Apollo Advantage Public default Coverage Provider "/>
<PARAM NAME="metaurl™ WVALUE=""/>
<PARAM NAME="keywords" WALUE="Imagery, Archiwve, Ionic, ERDAS, Geotiff"/>

<PARAM backgroundValue™ VALUE="0"/>
<PALRAN srs" VALUE="EPSG:4326"/>
<PARAM mode”™ VALUE="dynsmic"/>

<PARAM NAME="exposure" VALUE="SHOU_AGGREGATES"/>
<PARAM NAME="maxcache” VALUE="500"/>
<PARAM NAME="max3titch™ VALUE="500"/>
<PLRAM NAME="tmppath” VALUE="C:/ERDAS/EALIM Server/config/erdas-apollo/storage”/>
<PARAM NAME="indexingProvider™ VALUE="./babel-application-context.xml™/>
<PARAM NAME="indexingSerwver™ VALUE="URI™/>
<PARAM NAME="indexingType"™ VALUE="BABEL"/:
<PARAM NAME="queryables" VALUE="file:///C:/ERDAS/EAIN Server/config/erdas-apollo/querysbles.xml"/>
<PARAMELOCE NAME="contact':
<PARAN NAME="Organization™ WALUE="ERDAS, Inc."/>
<PARAN NAME="AddressType" VALUE="Postal"/>
<PARAN NAME="jiddressBody" VALUE="5051 Peachtree Corners Circle™/»
<PARAN NAME="City" VALUE="Norcross"/>
<PARAN NAME="3tate" VALUE="GL"/>
<PARAN NAME="PostCode™ VALUE="3009Z"/>
<PARAN NAME="Country™ VALUE="U3A"/>
<PLRAM NAME="Person" VALUE="Customer Support™/>
<PARAN NAME="Voice" VALUE="+1 770 776 34007"/>
<PARAN NAME="Email"” VALUE="supportlerdas.com” />
<PARAN NAME="OnlineResource™ VALUE="http://wuw.erdas.con” >
</PARANBLOCE>
<PALRAM NAME="GDALPath" VﬁLUE="C!fERDﬁSfERIH_SErVEKftDDlenBtiVEfgdBl"f}
<PARAM NAME="owsinfourl" VALUE="C:/ERDLS/ELIN Server/config/erdas-apollo/providers/coverage/eaim md. xml"/ >

<!—— uncomeent this to use an authentication mechanism is provided at the web-app container lewvel —->
<PARAM NAME="securityresolver" VALUE="container"/:>
<!-— Rhlso change the property in rds.policy and processmanager.properties files related to

gio pyramwid generation where proxy files are created-->

<PARAm NAME="PyramidDir"™ VALUE="C:/ERDASJEAIH_SerVerfStcragE/EAIH"f>

<PARAM NAME="VERYLARGETRIGGER™ VALUE="2500" />
<PARAM MNAME="WM3_ REPROJECTICH QUALITY" WALUE="75" i
<PARAN MNAME="WC3_REPROJECTICH QUALITY" WALUE="75" i
<PARAN NAME="NODEEXCLUIICON™ VALUE="single"/>
<PARLM NAME="decoderLiscUrl"™ VALUE="C:/ERDAS/EAIM Server/config/erdas—apollo/providers/coverage/decoder. tyit™/>
<PARLM NAME="metadatalListUrl"™ VALUE="C:/ERDAS/EAIN Server/config/erdas-apollo/providers/coverage/mecadata.txt™/ >

</ CREATE>

3. Save file im-providers. fac file and close it.

Changing the Pyramid Storage Location in rds.policy

1.

2.

Navigate to the directory
<APOLLO HOME>\tools\native\nci

Open the file rds.policy.

H rds.policy - WordPad
File Edt WYiew Insert Format Help

Ded Sk # dBEa §

|EDwmrNew v‘|1U

v|‘Weﬂam

v|[Bls 0 @ =

grant codeBase "file:C:${/}ERDAS${/IAPOLLOZO10%{/}toolss{/tnatives{/ncir {

permission java.securitvy.AllPermission:

y:

grant {

perwmission Jjava.net.SocketPermission "#%:1000-", "oonhect,acoept,resolwve’:

perwission java.lang.RuntimePermission "loadLibrary. ™)

perwmi==sion java.util.PropercyPermission "rds.context”™, "read,write®;

permission java.io.FilePermission "C:§{/}ERDAS§{/}APOLLOZO103{/}tools${/Inatived{/Incid{/lrds logdj.properties™, "read, write, execute":
permission java.io.FilePermission "C:§{/}ERDASS{/}FATM Server§{/!storage§{/ EATM§{/iproxy§{/}-", "read, execute";

I T
A.The path to the pyramid storage directory. B.

For Help, press F1

UM

3.

5.

Find the line that contains the path to the previous pyramid storage
directory.

This entire line is actually pointing to a directory called proxy that
exists inside the original pyramid storage directory. You need to
change this line so that it points to a directory called proxy inside
the new pyramid storage directory.

You can accomplish this by just changing part A shown in the
diagram above. This is the path to the pyramid storage directory.
Do not change part B.

Inside this file, paths must be written using ${\} as the path
separator rather than just the \ path separator that you typically use
to write a Windows path.

Save and close the rds.policy file.

Changing the Pyramid Storage Location in processmanager.properties

1.

If you are using JBoss as your application server, navigate to the
directory

<APOLLO HOME>\jboss\server\default\deploy\
erdas-apollo.ear\erdas-apollo.war\WEB-INF\classes.

If you are using WebLogic as your application server, navigate to
the directory

<APOLLO HOME>\dist\weblogic\
erdas—-apollo.ear\erdas-apollo.war\WEB-INF\classes

2. Open the file processmanager.properties.

H| processmanager. properties - WordPad

Fle Edit Wew Insert Format Help

DS d & # ®]

rds.classpath=C:/ERDAS/APOLLO2010/tools/ native/nei; C: /ERDAS/ APOLLO2010/ tools/ native/nei/nei-common. jar; C: /ERDAS/ APOLLO2Z010/tools/ native/nei/ne
rds.security.policy=C:/ERDAS/ APOLLOZ010/ tools/native/ nei/frds.policy

rds. log4i.properties=C:/ERDAS/ APOLLOZ010/ tools/native/nei/rds_ logdi.propercies

firds.debugrds=false

#irds.haltonstart=false

#3pecify which jdk to use for rds gio processes
rds. java.home=C: /ERDAS/APOLLOZ010/ tools/ jdk

#Specify all the options needed to fine tune RDS JVM each one separated by a space
rdz. jvm.options=-Xms64m —-Xmx128m -XX:+UTseParalleloldcC -XX:ParallelGCThreads=2

#3pecify the maximum pixel request the GICORasterCoverageFroxy can process (for instance 5000 x 5000, 10000 x 2500....)
rds.max.pixel.regquest.size=25000000

processmanager .min.process.count=1
ProcesSSHanager .max . process. count=5
processmanager .keepalivetime. inmins=10
processmanager .getprocess. timeout . inseconds=30
processmanager .getprocess. delay. inseconds=30
Processwanager .getprosess. numEetries=5

rds.proxy.directory=C:/ERDAS/ APOLLOZ010/ storage/ EAIN/ proxy

3]
For Help, press F1

General Server
Configuration

Install Properties The install.properties file contains a lot of the most basic options
that control how your ERDAS APOLLO Server product will work. These
options were initially set by the installer program when you installed
ERDAS APOLLO. All of the information

This file is located directly inside of the <APOLLO HOME> directory.

The following table shows the properties that you can change in the file
and describes the behavior that the property controls.

Table 13: Customizable Parameters in the Install.Properties File

Property Name Description

platform.home The ERDAS APOLLO installation directory.
apollo.server.host server host name

apollo.server.port server port number

apollo.shutdown.port server shutdown port number
apollo.server.admin. port server administration port number

Table 13: Customizable Parameters in the Install.Properties File

Property Name

Description

apollo.providers.vector.home

path to directory containing providers.fac for
vector (WFS) offerings

apollo.providers.map.home

path to directory containing providers.fac for
map (WMS) offerings

apollo.providers.coverage.home

path to directory containing providers.fac for
coverage (WCS) offerings

apollo.providers.process.home

path to directory containing providers.fac for
process (WPS) offerings

apollo.providers.wrs.home

path to directory containing providers.fac for
catalog (WRS) offerings

apollo.providers.admin.home

path to directory containing providers.fac for
administration

apollo.im.home

home directory for image management
components (usually installation directory

hibernate.connection.driver_class

type of database connection for Hibernate, e.g.
org.postgresql.Driver

hibernate.connection.url

connect string to database for Hibernate

hibernate.connection.username

database connection username for Hibernate

hibernate.connection.password

database connection password for Hibernate

babel.home

home directory for Babel catalog components
(usually installation directory)

apollo.server.home

release.babel.hibernate.dialect

dialect for database connections, e.g.
com.erdas.rsp.hibernate.postgis.PostgisDialect

release.babel.jdbc.driver.fgn

name of JDBC driver for Babel database
connection

release.babel.db.user

user id for Babel database connection

release.babel.db.password

password for Babel database connection

release.babel.db.url

connect string to database for Babel

babel.hibernate.dialect

dialect for Babel Hibernate database
connection, e.g.
com.erdas.rsp.hibernate.postgis.PostgisDialect

babel.db.user

user ID for Babel database connection

babel.db.password

password for Babel database connection

babel.db.url

connect string to database for Babel

Table 13: Customizable Parameters in the Install.Properties File

Property Name

Description

babel.jdbc.driver.fgn

babel.db.host

host name for Babel database connection

babel.db.port

port number for Babel database connection

babel.db.sid

database SID for Babel database connection

babel.log.home

ionic.catalog.product.name

apollo.java.home

JAVA Home for ERDAS APOLLO

eaim.server.nome

home directory for image management
components (usually installation directory)

eaim.server.host

host name for image management service

eaim.server.port

host port for image management service

eaim.server.smtp.host

host for SMTP connection

eaim.server.smtp.port

port for SMTP connection

eaim.server.smtp.user

user ID for SMTP connection

eaim.server.wcs.url

URL for WCS service

eaim.server.wrs.url

URL for WRS service

eaim.server.wfs.url

URL for WFS service

eaim.server.wps.url

URL for WPS service

eaim.server.wps.transientprovider.url

URL for transient WMS providers used by WPS

eaim.server.catalog.url

URL for ERDAS APOLLO Catalog service

eaim.server.clipzipship.url

URL for Clip/Zip/Ship service

eaim.server.quartzinterface.url

URL for Quartz interface

eaim.server.crawler.user

user ID for crawling

eaim.server.crawler.pass

password for crawling

eaim.server.quartz.jdbc.delegate.class

class name for Quartz JDBC connection

apollo.im.home

installation directory

gio.home

path to GIO

platform.gio.home

also path to GIO

platform.gio.arch

processor architecture for GIO

platform.gio.arch.mode

Hiding Clear Text
Passwords in
Configuration

Files

Table 13: Customizable Parameters in the Install.Properties File

Property Name

Description

eaim.server.streamedraster.access.url

URL for streamed (ECWP) raster access

eaim.server.streamedraster.access.enabled

if True, ECWP access is enabled

eaim.server.wps.gio.exedir

executable directory for WPS GIO

eaim.server.wps.gio.ismsdir

ISMS directory for WPS GIO

eaim.server.wps.gio.name

name of WPS GIO

eaim.server.wps.gio.exe

executable for WPS GIO

eaim.server.iws.home

path to IWS components, usually something
like {$platform.home}/tools/native/iws

ic.context.path

path to default context file

ic.logging.type

web client logging type (e.g. FILE)

apollo.client.components

name of properties file containing components
information for apollo client (file must be in
classpath). By default either apollo-im-
components.properties (Professional) or apollo-
im-components.properties (Essentials SDI)

apollo.client.contexts

name of properties file containing context
information for apollo client (file must be in
classpath)

The passwords that are used to gain access to the ERDAS APOLLO
Server and the ERDAS APOLLO database are stored in the

configuration files in clear text and are shown in exactly as you typed

them in.

If this is a security concern for your organization, you can hide these

passwords.

Server Configuration Files

Some of the passwords are stored in ERDAS APOLLO Server
configuration files for use by the system. You can encrypt the
passwords in these files so that the system can still read them, but a
human reader will not be able to read them and know exactly what they

are.

The application server that you are using for ERDAS APOLLO Server
determines which server configuration files contain passwords.

If you are using JBoss, the password is always found in the files
apollo-ds.xml and server.properties.

If you are using WebLogic, itis only found in the server.properties
file.

To encrypt the ERDAS APOLLO database password in the
configuration file apollo-login-config.xml:

1. Navigate to the directory
<APOLLO_HOME>/jboss/server/default.

Open the file apollo-login-config.xml for editing.
Open a command line window.

Navigate to the directory <APOLLO HOME>\jboss.

o » 0 b

Type in the following command at the prompt (or find it in the file
apollo-login-config.xml and copy and paste it).

Substitute the clear text database password for the
<CLEAR_TEXT_PASSWORD> placeholder.

This will invoke the JBoss secure identity login module, which will
encrypt your clear text password.

java -cp lib/jboss-common.jar;lib/jboss-jmx.jar;server/default/lib/jbosssx.jar;
server/default/lib/jboss-jca.jar
org.jboss.resource.security.SecureldentitylLoginModule <CLEAR TEXT PASSWORD>

6. The secure identity login module displays the encrypted password
in the command line window.

BN Administrator: Command Prompt = | 5] [t

C:~ERDAS~APOLLOZBA1B~Server_Prosjboss>java —cp lib/jboss—common.jar;lib/jhoss—jmx
.Jar;serversdefaultslibsjhosssx. jar:serversdefaults1ibsjhoss—jca.jar org.jhoss.p
ezource .security.SecureldentityloginModule APOLLO

Encoded password: 45%8ddfd4daciBalhb

C:~ERDASNAPOLLOZBiBNServer_ Prosjhossry_

Leave the command line window open. You will need it again in
one of the next steps.

7. Place this encrypted password inside the highlighted locations
inside the apollo-login-config.xml file.

E apollo-login-config.xml - Motepad

File Edit Format View Help

<!-- added for datasource password encryption --=

<l--
From <JBOSS_HOME> run this to ?et the encrypted password
java -cp 1ib/jboss-common. jar; Tib/jboss-jmx. jar; server/default/1ib/jbosssx. jar; server /default/

Output on console :

Encoded password: <ENCRYPTED DB_USER_PASSWORD>
Copy this from console and put it in the following two blocks for property named password
-
<l--
<application-policy name="EncryptDBPasswordl">
<authentication>
<login-module code="org. jboss.resource.security. secureldentityLoginmodule” flag="required™
<module-option name="username’><DB_USER_NAME></module-option=
<module-option name="password"=<ENCRYFTED DE_USER_PASSWORD=</module-option=
<module-option name="managedConnectionFactoryName=jboss. jca:name=spatialrlatformbps,se
</Togin-module>
</authentication>
</application-policy>
<application-policy name="EncryptDEPassword2">
<authentication>
<login-module code="org. jboss.resource.security. secureldentityLoginmodule” flag="required™
<module-option name="username’><DBE_USER_NAME></module-option>=
<module-option name="password"><ENCRYFTED DE PASSWORD=</module-option>
<module-option name="managedConnectionFactoryName">=jboss. jca:name=JBossMQDS,service=Lo:
</Togin-module>
=/authentication>
</application-policy>
-

</policy=

8. Save and close the apollo-login-config.xml file.

To encrypt the ERDAS APOLLO system passwords in the
configuration file server.properties:

1. Open a command line window
(or go to the one that is already open).

2. Navigate to the directory
<APOLLO HOME>/tools/password-encoder

3. Type encrypter.bat at the prompt and press Enter.
This runs the password encoder tool, which will prompt for a clear
text password.

r

4. The tool will encrypt the password you entered and display it in the
command line window.

BEX Administrator: Command Prompt = | B [

C:~ERDAS~APOLLO2B18~Server_Pro>cd tools
C:~ERDAS~APOLLOZB18“Server_ FPro“tools>cd password—encoder
C:~ERDAS~APOLLOZB1 B8 Server_Prostoolsspassword-encoder>encrypter _ hat

Enter the clear text password: myapolloadminpuwd
pkZcemM3INQgL3NwQQc5=mY THG 1A +Gak?

C:~ERDAS~APOLLOZA1 8" Server_FPro“toolsspassword-encoder>

5. You will need to use this tool to encrypt your admin password and
your public password.

6. Navigate to the directory
<APOLLO HOME>/jboss/server/default/deploy/
erdas-apollo.ear/conf

7. Right-click on the file server.properties and select
Open With > Wordpad in the menu that appears.

8. Find the property password.encryption.enabled.
It is located at the very top of the file.

Uncomment that property by removing the # in front of it.

server.properties - WordPad
File Edit View Insert Format Help

$# =set it to true to enable password encryption in the system
$password.encryption.enabled=true

Crawler Credentials
com.lggi.esp.crawlers.login.userid=admin
com.lggi.esp.crawlers.login.password=apollol23
$encrypted password for 'sample’
#com.lggi.esp.crawlers.login.password=V,/ke0blelsI=

to provide anonymous access..
anonymous.access.enabled=true

Anonyvmous user credentials
anonymous . login.userid=public
anonymous . login.password=publicl23

$encrypted password for "sample'
#anonymous . login. password=vV,/k60blel5I=

$# Get the root folder where EAIM is installed
eaim.installation.home.directory=C:/ERDAS/APOLLC2010/Server Pro

9. Find the property com.lggi.esp.crawlers.login.password.
Change the value for that property from the clear text admin
password to the encrypted admin password you obtained when you
ran the password encoder tool.

10. Find the property anonymous.login.password.
Change the value for that property from the clear text public
password to the encrypted public password you obtained when you
ran the password encoder tool.

NOTE: Although the public password is only used internally by the
ERDAS APOLLO system to grant guest access to unauthenticated
users and cannot provide access to sensitive information, you must
encrypt it as well when you set the password.encryption.enabled
property to true.

11. After you change both the apollo-login-config.xml and
server.properties files, you will need to restart the JBoss
application server.

Administrative Tools Configuration Files

Inthe build.properties file located in the directory

<APOLLO_ HOME>/tools/schema-generator, the passwords are
stored so that if you ever need to use the ant tool to rebuild
erdas-apollo.ear Or apollo-client.war, the correct passwords
will be included in the newly built files. To hide these passwords, you
can simply save a copy of this file to a secure location and delete it from
the directory <APOLLO HOME>/tools/schema-generator. Restore it
to its normal location if and when you need to use the ant tool to rebuild.

In the build.properties file located in the directory

<APOLLO HOME>/tools/harvester-console, the APOLLO admin
password is stored for the process of harvesting services from an older
version of ERDAS APOLLO and placing them in the catalog for ERDAS
APOLLO 2010 or higher. After you initially upgrade to ERDAS APOLLO
2010, you probably will not need this file again, but you should still save
it to a safe location in case something happens to your catalog and you
need to rebuild it. After a copy of the file is saved in the safe location,
you can delete it from the directory

<APOLLO HOME>/tools/harvester-console and restore it to its
normal location if and when you need to rebuild the catalog.

Web Client
Configuration and
Customization

Internationalization

On a fresh installation of ERDAS APOLLO, the default language of the
Web Client defaults to the locale of the server computer from which the
Web Client is served, and if that information is not present, it defaults to
American English. The Web Client includes a drop-down box in the
upper right corner that allows the user to explicitly choose the
presentation language of the Web Client from the given choices of
English, French, German, or Polish. If the user selects another
presentation language, that language will be used for the duration of the
session.

You can configure the Web Client to open with the language you
choose, and you can also add support for additional languages.

In order to perform these customizations, you need to know which files
the Web Client uses to store the language information. All of the
language files for the web client are located in the directory

<APOLLO HOME>/webapps/apollo-client/default/
WEB-INF/classes.

The files are:

* tilapia.properties - contains the setting for the default
language for the Web Client.

* apollo-client.properties -contains a list of all the
languages supported by the Web Client.

* tilapia-il8n.properties,
tilapia-il8n_fr.properties,
tilapia-il8n_de.properties
tilapia-il8n_pol.properties - contain the labels for
everything used by the ERDAS APOLLO Web Toolkit in
English, French, German, and Polish, respectively.

* apollo-client-il8n.properties,
apollo-client-il8n_fr.properties,
apollo-client-il8n_de.properties
apollo-client-il8n_pol.properties - contain the labels
for all of the parts used by the Web Client in English, French,
German, and Polish, respectively.

Changing the Default Presentation Language of the ERDAS APOLLO Web Client

ERDAS APOLLO reads a setting in a file to determine which files it
should read to obtain the labels for the controls. You can change this
setting and direct ERDAS APOLLO to use a different set of language
files. The ERDAS APOLLO product includes language files for English,
French, German, and Polish. If you want to use another language, you
will need to create the language files before you change this setting.

To change the setting for the default presentation language:

1. Navigate to the directory
<APOLLO HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Openthefile tilapia.properties.

3. Find the two lines shown below.

Set a default locale for the application
locale.default=

4. Ifyouwantto use English as the default language, change the value
of the locale.default property to en.

If you want to use French as the default language, change the
value of the locale.default property to fr.

If you want to use German as the default language, change the
value of the locale.default property to de.

If you want to use a different language, change the value of the
locale.default property to the code that is used to represent the
language in the names of the tilapia-il8n_xx.properties
and apollo-client-il8n_xx.properties files that contain the
information for this language.

For example, if you want to change the default language to
Spanish, you could name your language files

tilapia-i18n es.properties and
apollo-client-il8n_es.properties in order to distinguish
them from the other language files. You would then need to
uncomment the local.default property (by removing the # in front
of it) and change its value to es so that the lines look like the
following:

Set a default locale for the application
locale.default=es

5. Save andclose tilapia.properties.

6. Restart the application server.

Extending Language Support to Include Additional Languages

You can customize your ERDAS APOLLO Web Client to support any
language whose characters can be represented in Unicode.

If you are using the ERDAS APOLLO Web Client, you will need to
create new tilapia-i18n and apollo-client-i18n language files for your
language. You will also need to add this new language to the list of
supported languages in the apollo-client.properties file.

If you are only using the ERDAS APOLLO Web Toolkit to create your
own customized web client to use in place of the ERDAS APOLLO Web
Client that comes with your product, you only need to create a new
tilapia language file. You will not need to create a new apollo-client
language file, because it only contains labels for the ERDAS APOLLO
Web Client. You also will not need to add this new language to the list
of supported languages in apollo-client.properties.

After you create and edit the necessary files, you will need to rebuild the
apollo-client.war file and redeploy it to your application server.

To create new language files for ERDAS APOLLO:

1. Navigate to the directory
<APOLLO HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Copy the file tilapia_il8n.properties and place the copy in
the same directory.
(<APOLLO HOME>/webapps/apollo-client/default/
WEB-INF/classes).

3. Rename the copy tilapia_il8n_xx.properties.raw, where
xx is a two letter code that represents the name of the language.
This will allow you to easily distinguish this file from the other
language files.

The letters you select are up to you, and it doesn’t matter if the code
is in upper or lower case.

4. Openthe tilapia_il8n_xx.properties.raw file.

While there are different text editors that you can use, some will not
allow you to specify the encoding and some will try to append a byte
order mark in the file. Both of these situations will cause problems
later. Using WordPad to edit the file will allow you to circumvent
these problems.

5. Replace the English labels and messages with the translated labels
and messages. These labels and messages are highlighted in the
figure below.

The property names, which are located on the left of the equal
signs, should not be changed.

B tilapia-i18n.properties - WordPad

Flle Edit Yiew Insert Format Help

DEE & # &y

bkn.main.popup.metadata.selector . .mdtype. label = mdtype
bkhn.main.popup.metadata.selector . sslayer. label = sslayer
feature.basicgazetteerrenderer. loading = Loading...
feature.basicgazetteerrenderer.noresult = No result found

feature.edit.geompeditor.selector.new. label = —-- Zelect Type —-
feature.gazetteer.search. loading = Loading

feature.simplefeaturepanell . title = Edit Feature

feature.simplefeaturepanel? .buttons.accept. lakbel = Save
feature.simplefeaturepanelZ . .bucttons.cancel. label = Discard

feature.simplefeaturepanel? .buttons.close. lakel = Close
feature.simplefeaturepanels.failedretrievefeature = Could not retrieve feature with id: %0

feature.simplefeaturepanel?. importfeaturefailed = Failed importing feature: (0§
feature.simplefeaturepaneli.initializedfeaturefailed = Failed to retrieve feature type infc
feature.simplefeaturepanelZ .. updatefeaturefailed = Failed to update feature

geom. linearring. invalid = Lt least three points needed

6. When you are finished with your changes, select File >Save As on
the menu. When the Save As dialog opens, select Unicode Text
Document in the Save as type dropdown, then click the Save
button. This will save your file using the encoding UTF-16.

7. In order for the translated labels and messages to work on all
computers regardless of platform, you need to be sure they are
expressed using only ASCII characters and Unicode escape
(\WuXXXX) characters.

The easiest way to achieve this is to type the translations into the
language file just as you would normally type, save the file, and then
use the native2ascii tool to convert the
tilapia_il8n_xx.properties.raw file to the
tilapia_il8n_xx.properties file, which will be in the proper
format to be used by the ERDAS APOLLO system. The native2ascii
tool comes with the JDK that is bundled with ERDAS APOLLO.

To use the native2ascii tool:

1. Open a command line window.

2. Navigate to the directory <APOLLO HOME>tools/jdk/bin.
3. Type the command

native2ascii -encoding <encoding name>
<source_ file> <output file>

where:
* <encoding name> is UTF-16 (for this situation)

* <source file> isthe complete path to the
tilapia 118n xx.properties.raw file

* <output_ file> is the complete path to the
tilapia 118n xx.properties file.

4. Press Enter to execute the command.
The output file that you specified in the command will be
created and will be in the proper format.

You can use these same steps to create an
apollo-client-il8n_xx.properties file for your language as
well, if you need to do that.

To add the new language to the ERDAS APOLLO Web Client list of
supported languages:

1. Navigate to the directory
<APOLLO HOME>/webapps/apollo-client/default/
WEB-INF/classes.

2. Open the file apollo-client.properties

3. Find the lines shown below.

Locales
locale.info=EN|English
locale.info=FR|Fran\uOOe7ais
locale.info=DE | Deutsch

Add another line with the locale.info property, and set the value of the
property using the following format:

<LANGUAGE_CODE>|<LANGUAGE_NAME>

where <LANGUAGE_CODE> matches with the code you used to
represent the language within the file name and <LANGUAGE_NAME>
is the name of the language as you would like it to appear in the
dropdown box on the Web Client that will allow the user to select the
presentation language.

Note that the name of the language must be expressed using only
ASCII characters and Unicode escape (\uXXXX) characters.

If you added Spanish to the list, the list would look like the following:

Locales
locale.info=EN|English
locale.info=FR|Fran\ulOOe7ais
locale.info=DE | Deutsch
locale.info=ES|Espal\ulladol

To rebuild the apollo-client.war file and redeploy it:

1. Create an ANT_HOME system variable with the path to the
directory <APOLLO HOME>/tools/ant/bin.

2. After you have created the system variable, open a command line
window and type :

cd <APOLLO HOME>/tools/ant/bin <press ENTER>
ant tomcat55 <press ENTER>

The argument of the "ant" call should indicate the name of the
application server that you are using.

You can open and read the build.xml file located in the
<APOLLO_ HOME> directory to obtain the correct argument for your
application server.

3. Wait until the build is successful, then go to the directory
<APOLLO_HOME>/dist/<APPSERVER NAME> and copy the file
apollo-client.war.

4. Redeploy the new apollo-client.war file for your application
server.

For JBoss
Paste into the directory
<APOLLO HOME>/jboss/server/default/deploy

For Tomcat (5.5 and 6)
Paste into the directory <APOLLO HOME>/tomcat/webapps

5. Restart the application server.

Specifications for the native2ascii Tool

PURPOSE

The Java compiler and other Java tools can only process files that
contain ASCII or Unicode-escaped (\uXXXX notation) characters.

The native2ascii tool converts a file that uses some other type of
encoding into a file that contains only ASCII and Unicode-escaped
(\uXXXX notation) characters.

SYNTAX
native2ascii <options> [<inputfile> [<outputfile>]]
* Ifthe <outputfile> argument is omitted, the output will be

shown in the command line window instead of being placed in a
file.

* Ifthe <inputfile> argument is omitted, the tool will provide
you with a blinking cursor in the command line window so you
can type in the characters you would like for it to convert.

* If you want to omit the <inputfile>, you must also omit the
<outputfile>.

OPTIONS
The native2ascii tool supports the following options:

-encoding <encoding name>

In most circumstances, this specifies the encoding used by the
input. But, when used with the reverse option, it specifies the
encoding that you want for the output. The <encoding name>
that you use must match up with one of the names in the first
column of the table of supported encodings in the Supported
Encodings document:

http://java.sun.com/j2se/1.5/docs/guide/intl/
encoding.doc.html

If you do not specify the encoding, the tool will assume that the
input uses the encoding specified in the system property
file.encoding.

NOTE: Although you don't have to use this option, it is better if
you do - especially if you are using a file for input. There is a
strong possibility that the input file does not use the encoding
specified in the file.encoding property, because the actual
encoding of a file depends on the editor that was used to create
it.

If the native2ascii tool tries to perform the conversion using
incorrect information about the encoding of the input, it may
show errors, but it may simply give you corrupted output.

—reverse

Reverses the direction of the native2ascii tool so that it converts
a file with ASCII or Unicode-escaped characters into a file that
uses the encoding specified by the -encoding option. If the
encoding option is not used, the file will be converted into the
encoding specified by the system property file.encoding.

-J [option]

Passes an option to the Java Virtual Machine. The options that
you can use are defined on the page for the Java application
launcher:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/
windows/java.html

For example, -J Xms48m uses the xms option to set the initial
size of the memory allocation pool to 48 megabytes. Itis a
common convention for -J to pass options to the underlying
virtual machine.

http://java.sun.com/j2se/1.5/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/java.html

Web Client Configuration

The files that make up the ERDAS APOLLO Web Client are placed
together in the directory <APOLLO HOME>/webapps/apollo-client
when you install the ERDAS APOLLO Server.

Many customers like to customize their web clients. To do this, you will
need to open the <APOLLO HOME>/webapps/apollo-client
directory, find the file or files that contain the properties you want to
change, and make the required changes. After you have changed all of
the files, you will need to run an Apache Ant script that will compress
that directory into a Web ARchive (WAR) file. That war file is deployed
to the application server that you are using for the ERDAS APOLLO
Server.

If you need to use the ERDAS TITAN client for WPS execution, do
not remove the APOLLO-CLIENT.WAR from the ERDAS APOLLO
Application Server.

Properties Files

The APOLLO Web Client uses a number of .properties files to store
configuration parameters.

Anything you type in these properties files may potentially be
viewable by anyone who can view the ERDAS APOLLO Web
Client online. Do not put any information you want to keep
confidential inside these files!

Default Hierarchy
The root.properties file is in WEB-INF/classes/tilapia.properties

(this is hard-coded). All properties files need to be in the classpath (such
as in WEB-INF/classes).

* tilapia.properties
¢ apollo-client.properties

* apollo-client-contexts.properties (specifiedin a
tryimport in apollo-client.properties)

* apollo-im-components.properties Or
apollo-server-components.properties (specified in
a tryimport in apollo-client.properties)

Entries
Name Description Note
tryimport look for the specified file in the

classpath and if it is there, import it as
an additional properties file

feature.panel.config feature panel configuration as
described in the ERDAS APOLLO
Solutions Toolkit Main Guide, Section
3.6.5.24

locale.default Default locale - see
Internationalization on page 208

i18n.files Location for internationalization files -
see Internationalization on page 208

layerinfohandlers.wfshandler.maxfeatu| Maximum number of features to
res display in the Layer Info tool

metadata.tc211.stylesheet

Name

Description

Note

metadata.stylesheet.is019139

The path to the XSL file for displaying
1ISO19139 metadata

editors.timestameintervaleditor.dateoff
set

The default date offset (in days)
between the start and end date

context.startup

Context files that appear in the Context
list

context.overview.default

Path to the default context file

jsonhelper.ident

Indentation of the JSON output in the
logs

log.type Type of log (such as FILE, etc.)

log.enable Enable the log

log.filename Path to log file, such as /temp/mylog

log.maxfile Number of log files to create (the
logger will create new log files as
needed, cycling from mylog0 to
mylogmaxfile -1)

log.filesize Maximum size of log file in bytes before

a new log file is created

service.ias.url IAS URL see eaim.server.wcs.url
service.catalog.url Catalog URL see eaim.server.catalog.url
service.wrs.url WRS URL see eaim.server.wrs.url
service.wps.url WPS URL see eaim.server.wps.url

service.clipzipship.url

Clip/Zip/Ship service URL (see
eaim.server.clipzipship.url)

service.quartzinterface.url

Quartz JSON Interface URL (see
eaim.server.quartzinterface.url)

service.wrs.type

WRS type: Babel or RSCatalog

service.streamedraster.access.enabled

True: streaming (ECWP) access
enabled

see
eaim.server.streamedraster.access.enabled

service.streamedraster.access.url

URL for streaming (ECWP) access

see eaim.server.streamedraster.access.url

service.ias.iso19115Xslt

Path to the XSL file for displaying
1SO19115 metadata (can be undefined

service.ias.queryables

Path to the XML file containing
querables information

modules.search.layers.assumeErdas

If set to True, assume
modules.search.layers references a
WFS from ERDAS (allows
optimizations)

Name

Description

Note

modules.search.layers.useWms

If set to True, if the
modules.search.layers WFS server
exposes a WMS interface it be
used for rendering

thumbnail.width

Width of thumbnails in pixels

thumbnail.height

Height of thumbnails in pixels

thumbnail.create

If set to True, automatically create new
thumbnails

mail.smtp.host

SMTP host for Clip/Zip/Ship messages

see eaim.server.smtp.host

mail.smtp.port

SMTP host for Clip/Zip/Ship messages

see eaim.server.smtp.port

mail.smtp.user

SMTP host for Clip/Zip/Ship messages

see eaim.server.smtp.user

ui.objectinspector.defaultresultsperpag
e

Default number of results to display in
object inspectors

modules.search.max.nb.results

Maximum number of search results (-1
for unlimited)

modules.search.thumbnail.popup

if set to True, display thumbnails in the
popup when hovering over a result

modules.search.thumbnail.details

if set to True, display thumbnails in the
extended details panel

scripts.bundles.desc

path to the file containing the
description of custom modules

Components

Components are discrete parts of the web client application that can be
added or removed independently. The installer provides two files,
apollo-im-components.properties for Professional and
apollo-server-components.properties for Essentials-SDI. It
may be desirable to remove components by deleting or commenting out
their entries. Alternatively, a different properties file containing
components information can by provided by providing a different
tryimport entry in apollo-client.properties.

Entry Usage
components.active each entry will be added to the application on startup
components.search.typesfilter the entries that appear in the "types" dropdown list in the

Search panel

components.search.defaulttype the "types" entry that is selected by default in the Search
panel

Available components:
< Browse: The Browse tab, which allows the user to:
» see all of the known services in tree form
* add new services

+ create new transient services by uploading data from the
local file system

* Edit: The Edit tab for viewing and editing features stored in a
WFS

» Filter: The Filter tab for viewing and modifying the filter on a
WES layer

+ Search: The Search tab allowing the user to search the catalog
for available resources

* OverviewMap: The Overview Map displaying a large scale
overview of the user's current map view

* WPS: The Process tab for managing WPS processes

* Downloadlimagery: The Download tab for managing images for
the Clip/Zip/Ship operation

Contexts

The ERDAS APOLLO Web Client provides a tool that allows users to
pick from a list of predefined context files. By convention this list is
populated from entries in apollo-client-contexts.properties.
An example is provided in
apollo-client-contexts-samples.properties. The first entry
will be loaded at application startup by default. The format for these
entries is pipe (|) delimited as follows:

* context.startup
<path>|<title>|<documentation-page>|<overview-map-path>

* path
the path to the context file, such as /context/default-basemap.xml
o title
the title that will appear in the dropdown list, such as "Default
Basemap"

+ documentation page
the path to an HTML page providing additional details of the context
file (can be blank)

* overview map path
the path to the context file that will be used in the overview map. If
blank, defaults to ic.context.path

The ERDAS APOLLO Style Editor

Exploring Data

Getting started

ERDAS APOLLO Style Editor is a Java Swing client that can be used
to both explore and style geographical data. The ERDAS APOLLO
Style Editor can access OpenGIS services such as Web Map Servers,
Web Feature Servers, Web Coverage Servers. The ERDAS APOLLO
Style Editor also helps in the creation of styles which are used to render
maps by the Portrayal Service.

Please referto ERDAS Concepts Guide for more information about
OpenGlIS services, data styling and other GIS concepts.

This section gives a first introduction of the ERDAS APOLLO Style
Editor user interface. You will learn how to manipulate data sources,
apply them to your project and navigate through the data.

Starting the ERDAS APOLLO Style Editor

Once installed, you can start ERDAS APOLLO Style Editor in the
following way:

* On Windows platforms: Double-click the ERDAS APOLLO Style
Editor icon located on your desktop (if you choose to create a
desktop shortcut during the installation) or use the Start menu.

* On UNIX platforms: cd to the directory where you installed ERDAS
APOLLO Style Editor and type ./styleeditor.sh.

After the splash screen, you should see the ERDAS APOLLO Style
Editor main window described in the next section.

The ERDAS APOLLO Style Editor Main Window Described

The following picture presents the tool's main window. Note that the
data presented here varies according to your copy of ERDAS APOLLO
Style Editor and how you obtained it.

Figure 16: ERDAS APOLLO Style Editor Main Window

GI5 - IONIC StyleEditor 5.0.5

File Data Tools Yiew window Help o
Styles §|("Bostan | Belgium | United States | - 0
.
[Project | _, || o o)
@l M. . 1%
@ [hostan_shape 0 L1 E "I" ® R i]
@ A highways
= cleraultstyle 233000 234000 235000 236000 237000
&/ yaro 894000 894000
— defaultstde R —-‘\J’{,J
@ & land_use ‘
it defauhstde / e “ & s £ g}
§ ® place_names Y. y “ B %@Q !
+ defaultstyle (g
marker - “QO i
gag s =)
@ & protectedareas " “ = C’\
@ A roads =
@ [Boston multi Images 893000 5, e 6—‘(% t £93000
Tt W L
7 e\ L)
- C;";/E = :
Layers ASHMONT r
+ place_names (defaultste) - 5
== highways (defaultstyle) e - 1 Il i
= roads (defaultstyle)) :Q “
— hydro (defaultstyie)
B9 protectedareas (defaultstye) §92000 §92000
W [and_use (defaultstie) f
\ B> .s
Scale : X m
= MATIFAPAN] 2
scale: 1[22538 |
B b 891000 891000
SRS [EPSG26986 | = = ‘
a
Min.) [232038.0047 | FORBE\‘\S
Min. Y: [283925.3427 | MILT,
Max.) [237982.6547 |
)
Max. ¥ [834286.014% | : 200 0 200 400m
Update 890000 I i . 590000
Overview ra
10 10| Q 10? Q 100|0 Q 100?0 Q 1000|00 Q 1000?00.0 1 ?E? 1 ?ES |
place_names =
highways 1
roads 1
hiyedra [p:
Hﬂﬁ:\i
0

’% Rendering porirayal set K 223830.2246, V. 894248 1509

o presents the current project structure as a tree. This panel
shows all the data sources you added to the project: WFS, SHAPE
files, WMS, georeferenced images, WCS, ... Please refer to Data
Sources for more information.

. 9 is the map panel. Unless you specified a particular device
screen (see Views for more information about device screens), the
map panel will be resized when the main window is resized.

. e shows the list of layers that have been added to the preview
together with buttons to reorder the list and remove layers from the
preview. Please refer to the Layers for more information.

. o is the undockable ERDAS APOLLO Style Editor toolbar that
exposes several icons whose functions are described in the Map
Navigation.

. 6 is a collapsible overview area that shows the currently
displayed box on the whole world as a yellow area or as a red cross.
Refer to Map Overview for more information.

. o shows a status bar with information such as cursor coordinates
or measured lengths and areas. It contains a split pane which allows
you to reveal the Scale Range Manager described in Scale Range
Management.

. o presents the different views on the project as a range of tabs,
as described in Views.

. o shows the ERDAS APOLLO Server logo which indicates the
tool activity. The logo gets animated while ERDAS APOLLO Style
Editor is performing an operation. Note that the current operation

can be canceled at any time by pressing the Stop button 9 .

. o in the left corner of the status bar, this button gives you access
to the Status History where you can consult the previous performed
tasks.

Configuration

This section explains how to personalize some of the options ERDAS
APOLLO Style Editor uses to determine its behaviour. The options are
placed in the Style Editor Preferences window, accessible in the tools
menu.

Figure 17: Preferences item in the Tools menu

File Data [Tools| View Window Help

Styles :l Cazettear ’:
= Project

@ [BOSTON_SHAPE
@ A Boston highways

@ A Boston trdrology

@ £4 Boston Land Use

@ ® Boston Place Mames
@ £ Boston Protected Areas
@ & Boston roads

Figure 18: Preferences Window

Style Editor Preferences

HTTP

Cannection Timeaut: [[15000 |

Li

Prafix: |,flonic,fSt\.deEditor;preferences;log |

N

HTTP Connection Timeout

This option determines the maximum time ERDAS APOLLO Style
Editor waits for a server response. Selecting a time limit is useful to
prevent situations where ERDAS APOLLO Style Editor would be kept
waiting forever for a non-responsive server. The initial value is already
set to produce reasonable behaviour with the majority of the situations.
Expert users may want to adjust the value, and even deactivate it, to
meet more specific situations.

Procedure Setting the
Connection Timeout

1. Select the Preferences option from the Tools menu.

2. Inthe HTTP group, use the checkbox to activate or deactivate the
Connection Timeout.

3. Set the text field with the desired value in milliseconds.

This initial value is set to 15000 milliseconds.

Logging
ERDAS APOLLO Style Editor automatically creates log files you can

consult, for instance to view the generated map requests. By default,
the files have a prefix 1og , and are placed in the preferences folder.

Procedure Setting the Log Path

1. Select the Preferences item from the Tools menu.

2. In the Prefix text field, set the path and prefix for the log files.

Managing Projects

ERDAS APOLLO Style Editor stores its configuration in a centralized
file called a project file. The project file contains information such as:

+ alist of different views, each representing a map
» allist of data sources

* alist of layers

» style configuration

* miscellaneous settings

Project files are associated with the . gar extension.

Project management (new, open, ...) is carried-out throughout the File
menu.

Figure 19: The File Menu

l;'-..‘

- Data Tools Wiew Window Help

Mew Project

Qpen...

Cpen Eecent b

Save =]

Save As. . ogy
ze

[mpart Context... Marnes

Export Context... ted Areas

Stdes b

Load Fule Libramne. ..

Close

Exit

Creating a New Project

To create a new project, select New Project in the File menu. A new,
empty, project will be created in a new window.

When you start ERDAS APOLLO Style Editor (except for the very first
time), a new blank project is opened for you to work with.

v

To use your new project, you may want to start adding data

sources. Read the next sections of this guide to learn how to add
data sources.

Opening an Existing Project
To open an existing project, select Open... from the File menu. When
asked to choose a file, select a project file with an extension of .gar or
.styler . Typically, the projects are stored in the " projects "

subfolder of your ERDAS APOLLO Style Editor installation.

Figure 20: Open Project

Look In: | CJ projects - @ @ E

|j| Sample.zmerl

File Marme: |[sample.ster |

Files of Type: | All Files

Cpen Cancel

You can also open a project using the "Open Recent >" menu item,
which allows a direct access to the 10 most recently opened projects.

Figure 21: Open Recent Project

- Data Tools Wiew indow He
Mew Project —[§

Qpen. ..

Save acegis

Data Sources

Kinds of Data Sources
A data source is an OpenGIS/ISO compliant service or a GIS resource
such as a local Shapefiles directory. Data sources are used by the
ERDAS APOLLO Style Editor to render maps, but also to query them
about their capabilities, the list of layers from a WMS, feature
descriptions from a WFS, etc.

The current version of ERDAS APOLLO Style Editor supports the
following data sources:

* Remote WFS through the HTTP protocol.
* Local Feature Server, from a . fac file.

* Local Shapefiles directory.

* Remote WMS through HTTP.

* Local georeferenced image.

*+ Remote WCS with remote CPS.

* OpenGIS WMS Contexts

Please refer to the ERDAS Concepts Guide for more information
about these different data sources.

Adding a Data Source

Adding a data source, whatever its type, is accomplished by using the
Data menu shown below:

Figure 22: Data Menu

Tools Siew Wincow
Add Data Saurce. ..

Add Map Source. ..
Add Coverage Source. ..

The next sections present the detailed procedure for each data source
type.

Adding Features Resources

This section explains how to add remote OpenGIS/ISO Web Feature
Servers and Shapefiles directory to the project.

Procedure Adding Features Resources
1. Choose Data/Add Data Source... in the menu then choose either to
add a WFS, a Local Feature Server or a collection of Shapefiles located
in a given directory.

Figure 23: Add Data Source

Attach a New Feature Server

Choose the tye of datasource wou want to connect to;

Type: @ eh Feature Server (HTTP)

) Local Feature Server (From '.fac' file)

) Shapefile Directary

Cancel || << Back || Mext > H Finish |

2. Select the type of feature service to access:

* Adding a Web Feature Server

- To add areference to a remote Web Feature Server, select Web
Feature Server (HTTP):

- In the next panel, enter the service URL and click the Add
button, or choose a previously entered URL from the list. Note
that all valid URLs are automatically collected for future usage.

Figure 24: Attach a Newap Feature Server - Step 2

Eqnttach a New Feature Server

Select or enter the URL of the WFS you wantto connect to:

http:rapollotest:81 80/erdas-apollo-demofectofATLANTA_VECTOR

Mew: |hitpirapoliotest 31 80/erdas-apollo-demotectonATLANTA VECTOR Aol

Einish

Cancel == Back Mext ==

- You then have to provide both a Name and a Title for the
service. Name is used in styles in order to achieve the mapping
between a service and a rule bundle while title is the human-
readable title that will be displayed in the Project Structure
panel.

The Name must be in lowercase and must correspond to the name
of the provider specified in the configuration of the WFS. Please
refer to Servlet-Specific Configuration Parameters (providers
fac).

Figure 25: Attach a New Feature Server - Step 2

Eqntl:ach a Mew Feature Server

Enter an unigue name for the new datasource {should correspond to the lowercased WES provider name, if any):

Marme: |atlanta_uectur2|

Title: IATLANTA_UE CTOR

Cancel == Back et == Finish

- Click the Finish button.
* Adding a Local Feature Server

- Choose Local Feature Server .

- You may directly insert the path to the intended feature, select
the " ... " button to browse your files or choose one feature from
the data source history list.

- Select Finish .
* Adding Shapefiles

- Toadd a collection of Shapefiles, choose Shapefile Directory .
- First choose a directory that contains Shapefiles (common
extensions are .shp, .shx, .dbf).

- Since Shapefiles do not export any SRS information, you have
to manually specify the native SRS in which your data is
expressed.

The drop-down list of SRS is an history of your previous selections,
not a list of suggested SRS for the given Shapefiles directory.

Figure 26: Add Shapefiles

Eqntl:ach a Mew Feature Server
Selectthe Shapefile database you want to use as a data source:
Ciirectory: IC:L&pDIIulErdaSApDIIDSER‘JERldatalerdas-apnllu-demmshapematlanta ﬂ |
Geom.SRS: [EPSG:2240) -]
Cancel == Back Mext == Einish

- In the next panel, enter a Name for your data source.

The Name must be in lowercase and must correspond to the name
of the provider that will be used when configuring your Portrayal
Service.

Adding Raster Resources

This section explains how to add remote OpenGIS/ISO Web Map
Servers and local georeferenced images to the project.

Procedure Adding Raster Resources

1. Choose Data/Add Map Source... in the menu then choose either to
add a WMS or a georeferenced image located in a given directory.

Figure 27: Add Map Server

+ Attach a New Map Server x

Choose the twoe of map source wou want to Lse:

Type: @ Weh Map Server (HTTP)

() Local Geareferenced Image

Cancel << Back, Mext == Finish

2. Adding a Web Map Server - To add a reference to a remote Web Map
Server, select the corresponding radio button then follow these steps:

* In the next panel, enter the service URL and click the Add button,
or choose a previously entered URL from the list. Note that all valid
URLs are automatically collected for future usage.

Figure 28: Attach a New Map Server

Bfj attach a New Map Server

Select ar enter the LIRL of the WhiS you want o connect to:

Mlew: (hitpflocalhost 2080 erdas-apollofectorWORLOWIDE Ao

== Back et == Finish

* Click the Finish button.

3. Adding a Local Georeferenced Image - To add a georeferenced image,
choose the corresponding radio button then fill in the following panel:

Georeferenced image are not being saved in the project file in this
version of ERDAS APOLLO Style Editor. You will need to manually
add them on every new launch of the program.

» First select a georeferenced image from your hard disk.

* Manually specify the native SRS of the image, even if your
georeferenced image already defines an SRS.

The drop-down list of SRS is an history of your previous selections,
not a list of suggested SRS for the given georeferenced image.

Figure 29: Attach a Georeferenced Image

Select the image wou want to Use as a map source;

File: - || [.]

Image SRS: |EPSG:26986 |~
Prow. Mode: |Sing|e lrnage v|
Cancel < < Back, Mext == Finish

» Select a provider mode. Please refer the ERDAS APOLLO Server
Administrator's Guide for more details on provider modes.

* Click the Finish button.

Adding Coverage Resources

This section explains how to add remote OpenGIS/ISO Web Coverage
Servers and their associated Coverage Portrayal Services to the
project.

A Coverage Portrayal Service is a special kind of WMS that
understands SLD stylesheets containing raster coverage rendering
operations.

Procedure Adding Coverage Resources

1. Choose Data/Add Coverage Source... from the Data menu.

The coverage service doesn't currently support on-the-fly
coordinate transform. For example, to use the ATLANTA _SINGLE

coverage service, you will first need to change the coordinate
system to EPSG:2240, which is the SRS supported by

ATLANTA_SINGLE .
2. Enter the URL of a Web Coverage Service and click Add.

Figure 30: Coverage Source

Eqnttach a Mew Coverage Server

Select or enter the LIRL of the WCS you swant o connect to:

hitp:Mocalhost:83080/erdas-apollo-demolcoveradefATLANTA SIN